--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Euclidean_Division.thy	Wed Jan 04 21:28:29 2017 +0100
@@ -0,0 +1,287 @@
+(*  Title:      HOL/Euclidean_Division.thy
+    Author:     Manuel Eberl, TU Muenchen
+    Author:     Florian Haftmann, TU Muenchen
+*)
+
+section \<open>Uniquely determined division in euclidean (semi)rings\<close>
+
+theory Euclidean_Division
+  imports Nat_Transfer
+begin
+
+subsection \<open>Quotient and remainder in integral domains\<close>
+
+class semidom_modulo = algebraic_semidom + semiring_modulo
+begin
+
+lemma mod_0 [simp]: "0 mod a = 0"
+  using div_mult_mod_eq [of 0 a] by simp
+
+lemma mod_by_0 [simp]: "a mod 0 = a"
+  using div_mult_mod_eq [of a 0] by simp
+
+lemma mod_by_1 [simp]:
+  "a mod 1 = 0"
+proof -
+  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
+  then have "a + a mod 1 = a + 0" by simp
+  then show ?thesis by (rule add_left_imp_eq)
+qed
+
+lemma mod_self [simp]:
+  "a mod a = 0"
+  using div_mult_mod_eq [of a a] by simp
+
+lemma dvd_imp_mod_0 [simp]:
+  assumes "a dvd b"
+  shows "b mod a = 0"
+  using assms minus_div_mult_eq_mod [of b a] by simp
+
+lemma mod_0_imp_dvd: 
+  assumes "a mod b = 0"
+  shows   "b dvd a"
+proof -
+  have "b dvd ((a div b) * b)" by simp
+  also have "(a div b) * b = a"
+    using div_mult_mod_eq [of a b] by (simp add: assms)
+  finally show ?thesis .
+qed
+
+lemma mod_eq_0_iff_dvd:
+  "a mod b = 0 \<longleftrightarrow> b dvd a"
+  by (auto intro: mod_0_imp_dvd)
+
+lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
+  "a dvd b \<longleftrightarrow> b mod a = 0"
+  by (simp add: mod_eq_0_iff_dvd)
+
+lemma dvd_mod_iff: 
+  assumes "c dvd b"
+  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
+proof -
+  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
+    by (simp add: dvd_add_right_iff)
+  also have "(a div b) * b + a mod b = a"
+    using div_mult_mod_eq [of a b] by simp
+  finally show ?thesis .
+qed
+
+lemma dvd_mod_imp_dvd:
+  assumes "c dvd a mod b" and "c dvd b"
+  shows "c dvd a"
+  using assms dvd_mod_iff [of c b a] by simp
+
+end
+
+class idom_modulo = idom + semidom_modulo
+begin
+
+subclass idom_divide ..
+
+lemma div_diff [simp]:
+  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
+  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
+
+end
+
+  
+subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close>
+  
+class euclidean_semiring = semidom_modulo + normalization_semidom + 
+  fixes euclidean_size :: "'a \<Rightarrow> nat"
+  assumes size_0 [simp]: "euclidean_size 0 = 0"
+  assumes mod_size_less: 
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
+  assumes size_mult_mono:
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
+begin
+
+lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
+  by (subst mult.commute) (rule size_mult_mono)
+
+lemma euclidean_size_normalize [simp]:
+  "euclidean_size (normalize a) = euclidean_size a"
+proof (cases "a = 0")
+  case True
+  then show ?thesis
+    by simp
+next
+  case [simp]: False
+  have "euclidean_size (normalize a) \<le> euclidean_size (normalize a * unit_factor a)"
+    by (rule size_mult_mono) simp
+  moreover have "euclidean_size a \<le> euclidean_size (a * (1 div unit_factor a))"
+    by (rule size_mult_mono) simp
+  ultimately show ?thesis
+    by simp
+qed
+
+lemma dvd_euclidean_size_eq_imp_dvd:
+  assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b"
+    and "b dvd a" 
+  shows "a dvd b"
+proof (rule ccontr)
+  assume "\<not> a dvd b"
+  hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast
+  then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
+  from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff)
+  then obtain c where "b mod a = b * c" unfolding dvd_def by blast
+    with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
+  with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
+    using size_mult_mono by force
+  moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
+  have "euclidean_size (b mod a) < euclidean_size a"
+    using mod_size_less by blast
+  ultimately show False using \<open>euclidean_size a = euclidean_size b\<close>
+    by simp
+qed
+
+lemma euclidean_size_times_unit:
+  assumes "is_unit a"
+  shows   "euclidean_size (a * b) = euclidean_size b"
+proof (rule antisym)
+  from assms have [simp]: "a \<noteq> 0" by auto
+  thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
+  from assms have "is_unit (1 div a)" by simp
+  hence "1 div a \<noteq> 0" by (intro notI) simp_all
+  hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
+    by (rule size_mult_mono')
+  also from assms have "(1 div a) * (a * b) = b"
+    by (simp add: algebra_simps unit_div_mult_swap)
+  finally show "euclidean_size (a * b) \<le> euclidean_size b" .
+qed
+
+lemma euclidean_size_unit:
+  "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
+  using euclidean_size_times_unit [of a 1] by simp
+
+lemma unit_iff_euclidean_size: 
+  "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
+proof safe
+  assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
+  show "is_unit a"
+    by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all
+qed (auto intro: euclidean_size_unit)
+
+lemma euclidean_size_times_nonunit:
+  assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a"
+  shows   "euclidean_size b < euclidean_size (a * b)"
+proof (rule ccontr)
+  assume "\<not>euclidean_size b < euclidean_size (a * b)"
+  with size_mult_mono'[OF assms(1), of b] 
+    have eq: "euclidean_size (a * b) = euclidean_size b" by simp
+  have "a * b dvd b"
+    by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq]) (insert assms, simp_all)
+  hence "a * b dvd 1 * b" by simp
+  with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
+  with assms(3) show False by contradiction
+qed
+
+lemma dvd_imp_size_le:
+  assumes "a dvd b" "b \<noteq> 0" 
+  shows   "euclidean_size a \<le> euclidean_size b"
+  using assms by (auto elim!: dvdE simp: size_mult_mono)
+
+lemma dvd_proper_imp_size_less:
+  assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" 
+  shows   "euclidean_size a < euclidean_size b"
+proof -
+  from assms(1) obtain c where "b = a * c" by (erule dvdE)
+  hence z: "b = c * a" by (simp add: mult.commute)
+  from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
+  with z assms show ?thesis
+    by (auto intro!: euclidean_size_times_nonunit)
+qed
+
+end
+
+class euclidean_ring = idom_modulo + euclidean_semiring
+
+  
+subsection \<open>Uniquely determined division\<close>
+  
+class unique_euclidean_semiring = euclidean_semiring + 
+  fixes uniqueness_constraint :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  assumes size_mono_mult:
+    "b \<noteq> 0 \<Longrightarrow> euclidean_size a < euclidean_size c
+      \<Longrightarrow> euclidean_size (a * b) < euclidean_size (c * b)"
+    -- \<open>FIXME justify\<close>
+  assumes uniqueness_constraint_mono_mult:
+    "uniqueness_constraint a b \<Longrightarrow> uniqueness_constraint (a * c) (b * c)"
+  assumes uniqueness_constraint_mod:
+    "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> uniqueness_constraint (a mod b) b"
+  assumes div_bounded:
+    "b \<noteq> 0 \<Longrightarrow> uniqueness_constraint r b
+    \<Longrightarrow> euclidean_size r < euclidean_size b
+    \<Longrightarrow> (q * b + r) div b = q"
+begin
+
+lemma divmod_cases [case_names divides remainder by0]:
+  obtains 
+    (divides) q where "b \<noteq> 0"
+      and "a div b = q"
+      and "a mod b = 0"
+      and "a = q * b"
+  | (remainder) q r where "b \<noteq> 0" and "r \<noteq> 0"
+      and "uniqueness_constraint r b"
+      and "euclidean_size r < euclidean_size b"
+      and "a div b = q"
+      and "a mod b = r"
+      and "a = q * b + r"
+  | (by0) "b = 0"
+proof (cases "b = 0")
+  case True
+  then show thesis
+  by (rule by0)
+next
+  case False
+  show thesis
+  proof (cases "b dvd a")
+    case True
+    then obtain q where "a = b * q" ..
+    with \<open>b \<noteq> 0\<close> divides
+    show thesis
+      by (simp add: ac_simps)
+  next
+    case False
+    then have "a mod b \<noteq> 0"
+      by (simp add: mod_eq_0_iff_dvd)
+    moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "uniqueness_constraint (a mod b) b"
+      by (rule uniqueness_constraint_mod)
+    moreover have "euclidean_size (a mod b) < euclidean_size b"
+      using \<open>b \<noteq> 0\<close> by (rule mod_size_less)
+    moreover have "a = a div b * b + a mod b"
+      by (simp add: div_mult_mod_eq)
+    ultimately show thesis
+      using \<open>b \<noteq> 0\<close> by (blast intro: remainder)
+  qed
+qed
+
+lemma div_eqI:
+  "a div b = q" if "b \<noteq> 0" "uniqueness_constraint r b"
+    "euclidean_size r < euclidean_size b" "q * b + r = a"
+proof -
+  from that have "(q * b + r) div b = q"
+    by (auto intro: div_bounded)
+  with that show ?thesis
+    by simp
+qed
+
+lemma mod_eqI:
+  "a mod b = r" if "b \<noteq> 0" "uniqueness_constraint r b"
+    "euclidean_size r < euclidean_size b" "q * b + r = a" 
+proof -
+  from that have "a div b = q"
+    by (rule div_eqI)
+  moreover have "a div b * b + a mod b = a"
+    by (fact div_mult_mod_eq)
+  ultimately have "a div b * b + a mod b = a div b * b + r"
+    using \<open>q * b + r = a\<close> by simp
+  then show ?thesis
+    by simp
+qed
+
+end
+
+class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring
+
+end