src/HOLCF/IOA/meta_theory/Seq.ML
changeset 19550 ae77a20f6995
parent 19549 a8ed346f8635
child 19551 4103954f3668
--- a/src/HOLCF/IOA/meta_theory/Seq.ML	Wed May 03 03:46:25 2006 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,457 +0,0 @@
-(*  Title:      HOLCF/IOA/meta_theory/Seq.ML
-    ID:         $Id$
-    Author:     Olaf Mller
-*)
-
-Addsimps (sfinite.intros @ seq.rews);
-
-
-(* Instead of adding UU_neq_nil every equation UU~=x could be changed to x~=UU *)
-(*
-Goal "UU ~=nil";
-by (res_inst_tac [("s1","UU"),("t1","nil")]  (sym RS rev_contrapos) 1);
-by (REPEAT (Simp_tac 1));
-qed"UU_neq_nil";
-
-Addsimps [UU_neq_nil];
-*)
-
-
-
-(* ------------------------------------------------------------------------------------- *)
-
-
-(* ----------------------------------------------------  *)
-       section "recursive equations of operators";
-(* ----------------------------------------------------  *)
-
-
-(* ----------------------------------------------------------- *)
-(*                        smap                                 *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("smap_unfold", fix_prover2 (the_context ()) smap_def
-   "smap = (LAM f tr. case tr of  \
- \                         nil  => nil \
- \                       | x##xs => f$x ## smap$f$xs)");
-
-Goal "smap$f$nil=nil";
-by (stac smap_unfold 1);
-by (Simp_tac 1);
-qed"smap_nil";
-
-Goal "smap$f$UU=UU";
-by (stac smap_unfold 1);
-by (Simp_tac 1);
-qed"smap_UU";
-
-Goal
-"[|x~=UU|] ==> smap$f$(x##xs)= (f$x)##smap$f$xs";
-by (rtac trans 1);
-by (stac smap_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"smap_cons";
-
-(* ----------------------------------------------------------- *)
-(*                        sfilter                              *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("sfilter_unfold", fix_prover2 (the_context ()) sfilter_def
-  "sfilter = (LAM P tr. case tr of  \
- \         nil   => nil \
- \       | x##xs => If P$x then x##(sfilter$P$xs) else sfilter$P$xs fi)");
-
-Goal "sfilter$P$nil=nil";
-by (stac sfilter_unfold 1);
-by (Simp_tac 1);
-qed"sfilter_nil";
-
-Goal "sfilter$P$UU=UU";
-by (stac sfilter_unfold 1);
-by (Simp_tac 1);
-qed"sfilter_UU";
-
-Goal
-"x~=UU ==> sfilter$P$(x##xs)=   \
-\             (If P$x then x##(sfilter$P$xs) else sfilter$P$xs fi)";
-by (rtac trans 1);
-by (stac sfilter_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"sfilter_cons";
-
-(* ----------------------------------------------------------- *)
-(*                        sforall2                             *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("sforall2_unfold", fix_prover2 (the_context ()) sforall2_def
-   "sforall2 = (LAM P tr. case tr of  \
- \                         nil   => TT \
- \                       | x##xs => (P$x andalso sforall2$P$xs))");
-
-Goal "sforall2$P$nil=TT";
-by (stac sforall2_unfold 1);
-by (Simp_tac 1);
-qed"sforall2_nil";
-
-Goal "sforall2$P$UU=UU";
-by (stac sforall2_unfold 1);
-by (Simp_tac 1);
-qed"sforall2_UU";
-
-Goal
-"x~=UU ==> sforall2$P$(x##xs)= ((P$x) andalso sforall2$P$xs)";
-by (rtac trans 1);
-by (stac sforall2_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"sforall2_cons";
-
-
-(* ----------------------------------------------------------- *)
-(*                        stakewhile                           *)
-(* ----------------------------------------------------------- *)
-
-
-bind_thm ("stakewhile_unfold", fix_prover2 (the_context ()) stakewhile_def
-   "stakewhile = (LAM P tr. case tr of  \
- \                         nil   => nil \
- \                       | x##xs => (If P$x then x##(stakewhile$P$xs) else nil fi))");
-
-Goal "stakewhile$P$nil=nil";
-by (stac stakewhile_unfold 1);
-by (Simp_tac 1);
-qed"stakewhile_nil";
-
-Goal "stakewhile$P$UU=UU";
-by (stac stakewhile_unfold 1);
-by (Simp_tac 1);
-qed"stakewhile_UU";
-
-Goal
-"x~=UU ==> stakewhile$P$(x##xs) =   \
-\             (If P$x then x##(stakewhile$P$xs) else nil fi)";
-by (rtac trans 1);
-by (stac stakewhile_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"stakewhile_cons";
-
-(* ----------------------------------------------------------- *)
-(*                        sdropwhile                           *)
-(* ----------------------------------------------------------- *)
-
-
-bind_thm ("sdropwhile_unfold", fix_prover2 (the_context ()) sdropwhile_def
-   "sdropwhile = (LAM P tr. case tr of  \
- \                         nil   => nil \
- \                       | x##xs => (If P$x then sdropwhile$P$xs else tr fi))");
-
-Goal "sdropwhile$P$nil=nil";
-by (stac sdropwhile_unfold 1);
-by (Simp_tac 1);
-qed"sdropwhile_nil";
-
-Goal "sdropwhile$P$UU=UU";
-by (stac sdropwhile_unfold 1);
-by (Simp_tac 1);
-qed"sdropwhile_UU";
-
-Goal
-"x~=UU ==> sdropwhile$P$(x##xs) =   \
-\             (If P$x then sdropwhile$P$xs else x##xs fi)";
-by (rtac trans 1);
-by (stac sdropwhile_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"sdropwhile_cons";
-
-
-(* ----------------------------------------------------------- *)
-(*                        slast                                 *)
-(* ----------------------------------------------------------- *)
-
-
-bind_thm ("slast_unfold", fix_prover2 (the_context ()) slast_def
-   "slast = (LAM tr. case tr of  \
- \                         nil   => UU \
- \                       | x##xs => (If is_nil$xs then x else slast$xs fi))");
-
-
-Goal "slast$nil=UU";
-by (stac slast_unfold 1);
-by (Simp_tac 1);
-qed"slast_nil";
-
-Goal "slast$UU=UU";
-by (stac slast_unfold 1);
-by (Simp_tac 1);
-qed"slast_UU";
-
-Goal
-"x~=UU ==> slast$(x##xs)= (If is_nil$xs then x else slast$xs fi)";
-by (rtac trans 1);
-by (stac slast_unfold 1);
-by (Asm_full_simp_tac 1);
-by (rtac refl 1);
-qed"slast_cons";
-
-
-(* ----------------------------------------------------------- *)
-(*                        sconc                                 *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("sconc_unfold", fix_prover2 (the_context ()) sconc_def
-   "sconc = (LAM t1 t2. case t1 of  \
- \                         nil   => t2 \
- \                       | x##xs => x ## (xs @@ t2))");
-
-
-Goal "nil @@ y = y";
-by (stac sconc_unfold 1);
-by (Simp_tac 1);
-qed"sconc_nil";
-
-Goal "UU @@ y=UU";
-by (stac sconc_unfold 1);
-by (Simp_tac 1);
-qed"sconc_UU";
-
-Goal "(x##xs) @@ y=x##(xs @@ y)";
-by (rtac trans 1);
-by (stac sconc_unfold 1);
-by (Asm_full_simp_tac 1);
-by (case_tac "x=UU" 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"sconc_cons";
-
-Addsimps [sconc_nil,sconc_UU,sconc_cons];
-
-
-(* ----------------------------------------------------------- *)
-(*                        sflat                                 *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("sflat_unfold", fix_prover2 (the_context ()) sflat_def
-   "sflat = (LAM tr. case tr of  \
- \                         nil   => nil \
- \                       | x##xs => x @@ sflat$xs)");
-
-Goal "sflat$nil=nil";
-by (stac sflat_unfold 1);
-by (Simp_tac 1);
-qed"sflat_nil";
-
-Goal "sflat$UU=UU";
-by (stac sflat_unfold 1);
-by (Simp_tac 1);
-qed"sflat_UU";
-
-Goal "sflat$(x##xs)= x@@(sflat$xs)";
-by (rtac trans 1);
-by (stac sflat_unfold 1);
-by (Asm_full_simp_tac 1);
-by (case_tac "x=UU" 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"sflat_cons";
-
-
-
-
-(* ----------------------------------------------------------- *)
-(*                        szip                                 *)
-(* ----------------------------------------------------------- *)
-
-bind_thm ("szip_unfold", fix_prover2 (the_context ()) szip_def
-   "szip = (LAM t1 t2. case t1 of \
-\               nil   => nil    \
-\             | x##xs => (case t2 of     \
-\                          nil => UU    \
-\                        | y##ys => <x,y>##(szip$xs$ys)))");
-
-Goal "szip$nil$y=nil";
-by (stac szip_unfold 1);
-by (Simp_tac 1);
-qed"szip_nil";
-
-Goal "szip$UU$y=UU";
-by (stac szip_unfold 1);
-by (Simp_tac 1);
-qed"szip_UU1";
-
-Goal "x~=nil ==> szip$x$UU=UU";
-by (stac szip_unfold 1);
-by (Asm_full_simp_tac 1);
-by (res_inst_tac [("x","x")] seq.casedist 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"szip_UU2";
-
-Goal "x~=UU ==> szip$(x##xs)$nil=UU";
-by (rtac trans 1);
-by (stac szip_unfold 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"szip_cons_nil";
-
-Goal "[| x~=UU; y~=UU|] ==> szip$(x##xs)$(y##ys) = <x,y>##szip$xs$ys";
-by (rtac trans 1);
-by (stac szip_unfold 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"szip_cons";
-
-
-Addsimps [sfilter_UU,sfilter_nil,sfilter_cons,
-          smap_UU,smap_nil,smap_cons,
-          sforall2_UU,sforall2_nil,sforall2_cons,
-          slast_UU,slast_nil,slast_cons,
-          stakewhile_UU, stakewhile_nil, stakewhile_cons,
-          sdropwhile_UU, sdropwhile_nil, sdropwhile_cons,
-          sflat_UU,sflat_nil,sflat_cons,
-          szip_UU1,szip_UU2,szip_nil,szip_cons_nil,szip_cons];
-
-
-
-(* ------------------------------------------------------------------------------------- *)
-
-section "scons, nil";
-
-Goal
- "[|x~=UU;y~=UU|]==> (x##xs=y##ys) = (x=y & xs=ys)";
-by (rtac iffI 1);
-by (etac (hd seq.injects) 1);
-by Auto_tac;
-qed"scons_inject_eq";
-
-Goal "nil<<x ==> nil=x";
-by (res_inst_tac [("x","x")] seq.casedist 1);
-by (hyp_subst_tac 1);
-by (etac antisym_less 1);
-by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-by (hyp_subst_tac 1);
-by (Asm_full_simp_tac 1);
-qed"nil_less_is_nil";
-
-(* ------------------------------------------------------------------------------------- *)
-
-section "sfilter, sforall, sconc";
-
-
-Goal  "(if b then tr1 else tr2) @@ tr \
-        \= (if b then tr1 @@ tr else tr2 @@ tr)";
-by (res_inst_tac [("P","b"),("Q","b")] impCE 1);
-by (fast_tac HOL_cs 1);
-by (REPEAT (Asm_full_simp_tac 1));
-qed"if_and_sconc";
-
-Addsimps [if_and_sconc];
-
-
-Goal "sfilter$P$(x @@ y) = (sfilter$P$x @@ sfilter$P$y)";
-
-by (res_inst_tac[("x","x")] seq.ind 1);
-(* adm *)
-by (Simp_tac 1);
-(* base cases *)
-by (Simp_tac 1);
-by (Simp_tac 1);
-(* main case *)
-by (asm_full_simp_tac (simpset() setloop split_If_tac) 1);
-qed"sfiltersconc";
-
-Goal "sforall P (stakewhile$P$x)";
-by (simp_tac (simpset() addsimps [sforall_def]) 1);
-by (res_inst_tac[("x","x")] seq.ind 1);
-(* adm *)
-by (simp_tac (simpset() (*addsimps [adm_trick_1]*)) 1);
-(* base cases *)
-by (Simp_tac 1);
-by (Simp_tac 1);
-(* main case *)
-by (asm_full_simp_tac (simpset() setloop split_If_tac) 1);
-qed"sforallPstakewhileP";
-
-Goal "sforall P (sfilter$P$x)";
-by (simp_tac (simpset() addsimps [sforall_def]) 1);
-by (res_inst_tac[("x","x")] seq.ind 1);
-(* adm *)
-by (simp_tac (simpset() (*addsimps [adm_trick_1]*)) 1);
-(* base cases *)
-by (Simp_tac 1);
-by (Simp_tac 1);
-(* main case *)
-by (asm_full_simp_tac (simpset() setloop split_If_tac) 1);
-qed"forallPsfilterP";
-
-
-
-(* ------------------------------------------------------------------------------------- *)
-
-section "Finite";
-
-(* ----------------------------------------------------  *)
-(* Proofs of rewrite rules for Finite:                  *)
-(* 1. Finite(nil),   (by definition)                    *)
-(* 2. ~Finite(UU),                                      *)
-(* 3. a~=UU==> Finite(a##x)=Finite(x)                  *)
-(* ----------------------------------------------------  *)
-
-Goal "Finite x --> x~=UU";
-by (rtac impI 1);
-by (etac sfinite.induct 1);
- by (Asm_full_simp_tac 1);
-by (Asm_full_simp_tac 1);
-qed"Finite_UU_a";
-
-Goal "~(Finite UU)";
-by (cut_inst_tac [("x","UU")]Finite_UU_a  1);
-by (fast_tac HOL_cs 1);
-qed"Finite_UU";
-
-Goal "Finite x --> a~=UU --> x=a##xs --> Finite xs";
-by (strip_tac 1);
-by (etac sfinite.elim 1);
-by (fast_tac (HOL_cs addss simpset()) 1);
-by (fast_tac (HOL_cs addSDs seq.injects) 1);
-qed"Finite_cons_a";
-
-Goal "a~=UU ==>(Finite (a##x)) = (Finite x)";
-by (rtac iffI 1);
-by (rtac (Finite_cons_a RS mp RS mp RS mp) 1);
-by (REPEAT (assume_tac 1));
-by (fast_tac HOL_cs 1);
-by (Asm_full_simp_tac 1);
-qed"Finite_cons";
-
-Addsimps [Finite_UU];
-
-
-(* ------------------------------------------------------------------------------------- *)
-
-section "induction";
-
-
-(*--------------------------------   *)
-(* Extensions to Induction Theorems  *)
-(*--------------------------------   *)
-
-
-qed_goalw "seq_finite_ind_lemma" (the_context ())  [seq.finite_def]
-"(!!n. P(seq_take n$s)) ==>  seq_finite(s) -->P(s)"
- (fn prems =>
-        [
-        (strip_tac 1),
-        (etac exE 1),
-        (etac subst 1),
-        (resolve_tac prems 1)
-        ]);
-
-
-Goal "!!P.[|P(UU);P(nil);\
-\  !! x s1.[|x~=UU;P(s1)|] ==> P(x##s1)\
-\  |] ==> seq_finite(s) --> P(s)";
-by (rtac seq_finite_ind_lemma 1);
-by (etac seq.finite_ind 1);
- by (assume_tac 1);
-by (Asm_full_simp_tac 1);
-qed"seq_finite_ind";