doc-src/AxClass/Group/document/Group.tex
changeset 30242 aea5d7fa7ef5
parent 30241 3a1aef73b2b2
parent 30236 e70dae49dc57
child 30244 48543b307e99
child 30251 7aec011818e0
child 30257 06b2d7f9f64b
--- a/doc-src/AxClass/Group/document/Group.tex	Wed Mar 04 11:05:02 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,512 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Group}%
-%
-\isamarkupheader{Basic group theory%
-}
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{theory}\isamarkupfalse%
-\ Group\ \isakeyword{imports}\ Main\ \isakeyword{begin}%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\begin{isamarkuptext}%
-\medskip\noindent The meta-level type system of Isabelle supports
-  \emph{intersections} and \emph{inclusions} of type classes. These
-  directly correspond to intersections and inclusions of type
-  predicates in a purely set theoretic sense. This is sufficient as a
-  means to describe simple hierarchies of structures.  As an
-  illustration, we use the well-known example of semigroups, monoids,
-  general groups and Abelian groups.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Monoids and Groups%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-First we declare some polymorphic constants required later for the
-  signature parts of our structures.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{consts}\isamarkupfalse%
-\isanewline
-\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymodot}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
-\ \ invers\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharparenleft}{\isacharunderscore}{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
-\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isasymone}{\isachardoublequoteclose}{\isacharparenright}%
-\begin{isamarkuptext}%
-\noindent Next we define class \isa{monoid} of monoids with
-  operations \isa{{\isasymodot}} and \isa{{\isasymone}}.  Note that multiple class
-  axioms are allowed for user convenience --- they simply represent
-  the conjunction of their respective universal closures.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{axclass}\isamarkupfalse%
-\ monoid\ {\isasymsubseteq}\ type\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequoteclose}%
-\begin{isamarkuptext}%
-\noindent So class \isa{monoid} contains exactly those types
-  \isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymone}\ {\isasymColon}\ {\isasymtau}}
-  are specified appropriately, such that \isa{{\isasymodot}} is associative and
-  \isa{{\isasymone}} is a left and right unit element for the \isa{{\isasymodot}}
-  operation.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-\medskip Independently of \isa{monoid}, we now define a linear
-  hierarchy of semigroups, general groups and Abelian groups.  Note
-  that the names of class axioms are automatically qualified with each
-  class name, so we may re-use common names such as \isa{assoc}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{axclass}\isamarkupfalse%
-\ semigroup\ {\isasymsubseteq}\ type\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{axclass}\isamarkupfalse%
-\ group\ {\isasymsubseteq}\ semigroup\isanewline
-\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequoteopen}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymone}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{axclass}\isamarkupfalse%
-\ agroup\ {\isasymsubseteq}\ group\isanewline
-\ \ commute{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isacharequal}\ y\ {\isasymodot}\ x{\isachardoublequoteclose}%
-\begin{isamarkuptext}%
-\noindent Class \isa{group} inherits associativity of \isa{{\isasymodot}}
-  from \isa{semigroup} and adds two further group axioms. Similarly,
-  \isa{agroup} is defined as the subset of \isa{group} such that
-  for all of its elements \isa{{\isasymtau}}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is even commutative.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Abstract reasoning%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-In a sense, axiomatic type classes may be viewed as \emph{abstract
-  theories}.  Above class definitions gives rise to abstract axioms
-  \isa{assoc}, \isa{left{\isacharunderscore}unit}, \isa{left{\isacharunderscore}inverse}, \isa{commute}, where any of these contain a type variable \isa{{\isacharprime}a\ {\isasymColon}\ c} that is restricted to types of the corresponding class \isa{c}.  \emph{Sort constraints} like this express a logical
-  precondition for the whole formula.  For example, \isa{assoc}
-  states that for all \isa{{\isasymtau}}, provided that \isa{{\isasymtau}\ {\isasymColon}\ semigroup}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is associative.
-
-  \medskip From a technical point of view, abstract axioms are just
-  ordinary Isabelle theorems, which may be used in proofs without
-  special treatment.  Such ``abstract proofs'' usually yield new
-  ``abstract theorems''.  For example, we may now derive the following
-  well-known laws of general groups.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{theorem}\isamarkupfalse%
-\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymone}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequoteclose}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\ {\isacharminus}\isanewline
-\ \ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{finally}\isamarkupfalse%
-\ \isacommand{show}\isamarkupfalse%
-\ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isamarkupfalse%
-\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent With \isa{group{\isacharunderscore}right{\isacharunderscore}inverse} already available, \isa{group{\isacharunderscore}right{\isacharunderscore}unit}\label{thm:group-right-unit} is now established
-  much easier.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{theorem}\isamarkupfalse%
-\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequoteclose}\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\ {\isacharminus}\isanewline
-\ \ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\isamarkupfalse%
-\ \isacommand{have}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{finally}\isamarkupfalse%
-\ \isacommand{show}\isamarkupfalse%
-\ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isamarkupfalse%
-\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\medskip Abstract theorems may be instantiated to only those types
-  \isa{{\isasymtau}} where the appropriate class membership \isa{{\isasymtau}\ {\isasymColon}\ c} is
-  known at Isabelle's type signature level.  Since we have \isa{agroup\ {\isasymsubseteq}\ group\ {\isasymsubseteq}\ semigroup} by definition, all theorems of \isa{semigroup} and \isa{group} are automatically inherited by \isa{group} and \isa{agroup}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Abstract instantiation%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-From the definition, the \isa{monoid} and \isa{group} classes
-  have been independent.  Note that for monoids, \isa{right{\isacharunderscore}unit}
-  had to be included as an axiom, but for groups both \isa{right{\isacharunderscore}unit} and \isa{right{\isacharunderscore}inverse} are derivable from the other
-  axioms.  With \isa{group{\isacharunderscore}right{\isacharunderscore}unit} derived as a theorem of group
-  theory (see page~\pageref{thm:group-right-unit}), we may now
-  instantiate \isa{monoid\ {\isasymsubseteq}\ semigroup} and \isa{group\ {\isasymsubseteq}\ monoid} properly as follows (cf.\ \figref{fig:monoid-group}).
-
- \begin{figure}[htbp]
-   \begin{center}
-     \small
-     \unitlength 0.6mm
-     \begin{picture}(65,90)(0,-10)
-       \put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}}
-       \put(15,50){\line(1,1){10}} \put(35,60){\line(1,-1){10}}
-       \put(15,5){\makebox(0,0){\isa{agroup}}}
-       \put(15,25){\makebox(0,0){\isa{group}}}
-       \put(15,45){\makebox(0,0){\isa{semigroup}}}
-       \put(30,65){\makebox(0,0){\isa{type}}} \put(50,45){\makebox(0,0){\isa{monoid}}}
-     \end{picture}
-     \hspace{4em}
-     \begin{picture}(30,90)(0,0)
-       \put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}}
-       \put(15,50){\line(0,1){10}} \put(15,70){\line(0,1){10}}
-       \put(15,5){\makebox(0,0){\isa{agroup}}}
-       \put(15,25){\makebox(0,0){\isa{group}}}
-       \put(15,45){\makebox(0,0){\isa{monoid}}}
-       \put(15,65){\makebox(0,0){\isa{semigroup}}}
-       \put(15,85){\makebox(0,0){\isa{type}}}
-     \end{picture}
-     \caption{Monoids and groups: according to definition, and by proof}
-     \label{fig:monoid-group}
-   \end{center}
- \end{figure}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{instance}\isamarkupfalse%
-\ monoid\ {\isasymsubseteq}\ semigroup\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\isanewline
-\ \ \isacommand{fix}\isamarkupfalse%
-\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}monoid{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}rule\ monoid{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-\isanewline
-%
-\endisadelimproof
-\isanewline
-\isacommand{instance}\isamarkupfalse%
-\ group\ {\isasymsubseteq}\ monoid\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\isanewline
-\ \ \isacommand{fix}\isamarkupfalse%
-\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}group{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}rule\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}rule\ group{\isacharunderscore}class{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\medskip The \isakeyword{instance} command sets up an appropriate
-  goal that represents the class inclusion (or type arity, see
-  \secref{sec:inst-arity}) to be proven (see also
-  \cite{isabelle-isar-ref}).  The initial proof step causes
-  back-chaining of class membership statements wrt.\ the hierarchy of
-  any classes defined in the current theory; the effect is to reduce
-  to the initial statement to a number of goals that directly
-  correspond to any class axioms encountered on the path upwards
-  through the class hierarchy.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Concrete instantiation \label{sec:inst-arity}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-So far we have covered the case of the form
-  \isakeyword{instance}~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}}, namely
-  \emph{abstract instantiation} --- $c@1$ is more special than \isa{c\isactrlsub {\isadigit{1}}} and thus an instance of \isa{c\isactrlsub {\isadigit{2}}}.  Even more
-  interesting for practical applications are \emph{concrete
-  instantiations} of axiomatic type classes.  That is, certain simple
-  schemes \isa{{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isasymColon}\ c} of class
-  membership may be established at the logical level and then
-  transferred to Isabelle's type signature level.
-
-  \medskip As a typical example, we show that type \isa{bool} with
-  exclusive-or as \isa{{\isasymodot}} operation, identity as \isa{{\isasyminv}}, and
-  \isa{False} as \isa{{\isasymone}} forms an Abelian group.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{defs}\isamarkupfalse%
-\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
-\ \ times{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymnoteq}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ inverse{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}x{\isasyminv}\ {\isasymequiv}\ x{\isasymColon}bool{\isachardoublequoteclose}\isanewline
-\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymequiv}\ False{\isachardoublequoteclose}%
-\begin{isamarkuptext}%
-\medskip It is important to note that above \isakeyword{defs} are
-  just overloaded meta-level constant definitions, where type classes
-  are not yet involved at all.  This form of constant definition with
-  overloading (and optional recursion over the syntactic structure of
-  simple types) are admissible as definitional extensions of plain HOL
-  \cite{Wenzel:1997:TPHOL}.  The Haskell-style type system is not
-  required for overloading.  Nevertheless, overloaded definitions are
-  best applied in the context of type classes.
-
-  \medskip Since we have chosen above \isakeyword{defs} of the generic
-  group operations on type \isa{bool} appropriately, the class
-  membership \isa{bool\ {\isasymColon}\ agroup} may be now derived as follows.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{instance}\isamarkupfalse%
-\ bool\ {\isacharcolon}{\isacharcolon}\ agroup\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\isanewline
-\ \ \ \ unfold\ times{\isacharunderscore}bool{\isacharunderscore}def\ inverse{\isacharunderscore}bool{\isacharunderscore}def\ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharparenright}\isanewline
-\ \ \isacommand{fix}\isamarkupfalse%
-\ x\ y\ z\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isasymnoteq}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymnoteq}\ {\isacharparenleft}y\ {\isasymnoteq}\ z{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ blast\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isacharparenleft}False\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ blast\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ False{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ blast\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymnoteq}\ x{\isacharparenright}{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ blast\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-The result of an \isakeyword{instance} statement is both expressed
-  as a theorem of Isabelle's meta-logic, and as a type arity of the
-  type signature.  The latter enables type-inference system to take
-  care of this new instance automatically.
-
-  \medskip We could now also instantiate our group theory classes to
-  many other concrete types.  For example, \isa{int\ {\isasymColon}\ agroup}
-  (e.g.\ by defining \isa{{\isasymodot}} as addition, \isa{{\isasyminv}} as negation
-  and \isa{{\isasymone}} as zero) or \isa{list\ {\isasymColon}\ {\isacharparenleft}type{\isacharparenright}\ semigroup}
-  (e.g.\ if \isa{{\isasymodot}} is defined as list append).  Thus, the
-  characteristic constants \isa{{\isasymodot}}, \isa{{\isasyminv}}, \isa{{\isasymone}}
-  really become overloaded, i.e.\ have different meanings on different
-  types.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Lifting and Functors%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-As already mentioned above, overloading in the simply-typed HOL
-  systems may include recursion over the syntactic structure of types.
-  That is, definitional equations \isa{c\isactrlsup {\isasymtau}\ {\isasymequiv}\ t} may also
-  contain constants of name \isa{c} on the right-hand side --- if
-  these have types that are structurally simpler than \isa{{\isasymtau}}.
-
-  This feature enables us to \emph{lift operations}, say to Cartesian
-  products, direct sums or function spaces.  Subsequently we lift
-  \isa{{\isasymodot}} component-wise to binary products \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{defs}\isamarkupfalse%
-\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
-\ \ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}p\ {\isasymodot}\ q\ {\isasymequiv}\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}{\isachardoublequoteclose}%
-\begin{isamarkuptext}%
-It is very easy to see that associativity of \isa{{\isasymodot}} on \isa{{\isacharprime}a}
-  and \isa{{\isasymodot}} on \isa{{\isacharprime}b} transfers to \isa{{\isasymodot}} on \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.  Hence the binary type constructor \isa{{\isasymodot}} maps semigroups
-  to semigroups.  This may be established formally as follows.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-\isacommand{instance}\isamarkupfalse%
-\ {\isacharasterisk}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}semigroup{\isacharcomma}\ semigroup{\isacharparenright}\ semigroup\isanewline
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-\isacommand{proof}\isamarkupfalse%
-\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\ unfold\ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}\isanewline
-\ \ \isacommand{fix}\isamarkupfalse%
-\ p\ q\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a{\isasymColon}semigroup\ {\isasymtimes}\ {\isacharprime}b{\isasymColon}semigroup{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\isanewline
-\ \ \ \ {\isachardoublequoteopen}{\isacharparenleft}fst\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ fst\ r{\isacharcomma}\isanewline
-\ \ \ \ \ \ snd\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ snd\ r{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ \ \ \ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharcomma}\isanewline
-\ \ \ \ \ \ \ \ snd\ p\ {\isasymodot}\ snd\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ add{\isacharcolon}\ semigroup{\isacharunderscore}class{\isachardot}assoc{\isacharparenright}\isanewline
-\isacommand{qed}\isamarkupfalse%
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-Thus, if we view class instances as ``structures'', then overloaded
-  constant definitions with recursion over types indirectly provide
-  some kind of ``functors'' --- i.e.\ mappings between abstract
-  theories.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{end}\isamarkupfalse%
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\isanewline
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: