| changeset 56536 | aefb4a8da31f |
| parent 56371 | fb9ae0727548 |
| child 56541 | 0e3abadbef39 |
--- a/src/HOL/Limits.thy Fri Apr 11 12:43:22 2014 +0200 +++ b/src/HOL/Limits.thy Fri Apr 11 13:36:57 2014 +0200 @@ -1239,7 +1239,7 @@ proof (induct n) case (Suc n) have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)" - by (simp add: field_simps real_of_nat_Suc mult_nonneg_nonneg x) + by (simp add: field_simps real_of_nat_Suc x) also have "\<dots> \<le> (x + 1)^Suc n" using Suc x by (simp add: mult_left_mono) finally show ?case .