src/HOL/ex/MT.thy
changeset 969 b051e2fc2e34
child 972 e61b058d58d2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/MT.thy	Wed Mar 22 12:42:34 1995 +0100
@@ -0,0 +1,278 @@
+(*  Title: 	HOL/ex/mt.thy
+    ID:         $Id$
+    Author: 	Jacob Frost, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Based upon the article
+    Robin Milner and Mads Tofte,
+    Co-induction in Relational Semantics,
+    Theoretical Computer Science 87 (1991), pages 209-220.
+
+Written up as
+    Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
+    Report 308, Computer Lab, University of Cambridge (1993).
+*)
+
+MT = Gfp + Sum + 
+
+types 
+  Const
+
+  ExVar
+  Ex
+
+  TyConst
+  Ty
+
+  Clos
+  Val
+
+  ValEnv
+  TyEnv
+
+arities 
+  Const :: term
+
+  ExVar :: term
+  Ex :: term
+
+  TyConst :: term
+  Ty :: term
+
+  Clos :: term
+  Val :: term
+
+  ValEnv :: term
+  TyEnv :: term
+
+consts
+  c_app :: "[Const, Const] => Const"
+
+  e_const :: "Const => Ex"
+  e_var :: "ExVar => Ex"
+  e_fn :: "[ExVar, Ex] => Ex" ("fn _ => _" [0,51] 1000)
+  e_fix :: "[ExVar, ExVar, Ex] => Ex" ("fix _ ( _ ) = _" [0,51,51] 1000)
+  e_app :: "[Ex, Ex] => Ex" ("_ @ _" [51,51] 1000)
+  e_const_fst :: "Ex => Const"
+
+  t_const :: "TyConst => Ty"
+  t_fun :: "[Ty, Ty] => Ty" ("_ -> _" [51,51] 1000)
+
+  v_const :: "Const => Val"
+  v_clos :: "Clos => Val"
+  
+  ve_emp :: "ValEnv"
+  ve_owr :: "[ValEnv, ExVar, Val] => ValEnv" ("_ + { _ |-> _ }" [36,0,0] 50)
+  ve_dom :: "ValEnv => ExVar set"
+  ve_app :: "[ValEnv, ExVar] => Val"
+
+  clos_mk :: "[ExVar, Ex, ValEnv] => Clos" ("<| _  , _ , _ |>" [0,0,0] 1000)
+
+  te_emp :: "TyEnv"
+  te_owr :: "[TyEnv, ExVar, Ty] => TyEnv" ("_ + { _ |=> _ }" [36,0,0] 50)
+  te_app :: "[TyEnv, ExVar] => Ty"
+  te_dom :: "TyEnv => ExVar set"
+
+  eval_fun :: "((ValEnv * Ex) * Val) set => ((ValEnv * Ex) * Val) set"
+  eval_rel :: "((ValEnv * Ex) * Val) set"
+  eval :: "[ValEnv, Ex, Val] => bool" ("_ |- _ ---> _" [36,0,36] 50)
+
+  elab_fun :: "((TyEnv * Ex) * Ty) set => ((TyEnv * Ex) * Ty) set"
+  elab_rel :: "((TyEnv * Ex) * Ty) set"
+  elab :: "[TyEnv, Ex, Ty] => bool" ("_ |- _ ===> _" [36,0,36] 50)
+  
+  isof :: "[Const, Ty] => bool" ("_ isof _" [36,36] 50)
+  isof_env :: "[ValEnv,TyEnv] => bool" ("_ isofenv _")
+
+  hasty_fun :: "(Val * Ty) set => (Val * Ty) set"
+  hasty_rel :: "(Val * Ty) set"
+  hasty :: "[Val, Ty] => bool" ("_ hasty _" [36,36] 50)
+  hasty_env :: "[ValEnv,TyEnv] => bool" ("_ hastyenv _ " [36,36] 35)
+
+rules
+
+(* 
+  Expression constructors must be injective, distinct and it must be possible
+  to do induction over expressions.
+*)
+
+(* All the constructors are injective *)
+
+  e_const_inj "e_const(c1) = e_const(c2) ==> c1 = c2"
+  e_var_inj "e_var(ev1) = e_var(ev2) ==> ev1 = ev2"
+  e_fn_inj "fn ev1 => e1 = fn ev2 => e2 ==> ev1 = ev2 & e1 = e2"
+  e_fix_inj 
+    " fix ev11e(v12) = e1 = fix ev21(ev22) = e2 ==> \
+\     ev11 = ev21 & ev12 = ev22 & e1 = e2 \
+\   "
+  e_app_inj "e11 @ e12 = e21 @ e22 ==> e11 = e21 & e12 = e22"
+
+(* All constructors are distinct *)
+
+  e_disj_const_var "~e_const(c) = e_var(ev)"
+  e_disj_const_fn "~e_const(c) = fn ev => e"
+  e_disj_const_fix "~e_const(c) = fix ev1(ev2) = e"
+  e_disj_const_app "~e_const(c) = e1 @ e2"
+  e_disj_var_fn "~e_var(ev1) = fn ev2 => e"
+  e_disj_var_fix "~e_var(ev) = fix ev1(ev2) = e"
+  e_disj_var_app "~e_var(ev) = e1 @ e2"
+  e_disj_fn_fix "~fn ev1 => e1 = fix ev21(ev22) = e2"
+  e_disj_fn_app "~fn ev1 => e1 = e21 @ e22"
+  e_disj_fix_app "~fix ev11(ev12) = e1 = e21 @ e22"
+
+(* Strong elimination, induction on expressions  *)
+
+  e_ind 
+    " [|  !!ev. P(e_var(ev)); \
+\         !!c. P(e_const(c)); \
+\         !!ev e. P(e) ==> P(fn ev => e); \
+\         !!ev1 ev2 e. P(e) ==> P(fix ev1(ev2) = e); \
+\         !!e1 e2. P(e1) ==> P(e2) ==> P(e1 @ e2) \
+\     |] ==> \
+\   P(e) \
+\   "
+
+(* Types - same scheme as for expressions *)
+
+(* All constructors are injective *) 
+
+  t_const_inj "t_const(c1) = t_const(c2) ==> c1 = c2"
+  t_fun_inj "t11 -> t12 = t21 -> t22 ==> t11 = t21 & t12 = t22"
+
+(* All constructors are distinct, not needed so far ... *)
+
+(* Strong elimination, induction on types *)
+
+ t_ind 
+    "[| !!p. P(t_const p); !!t1 t2. P(t1) ==> P(t2) ==> P(t_fun t1 t2) |] \
+\    ==> P(t)"
+
+
+(* Values - same scheme again *)
+
+(* All constructors are injective *) 
+
+  v_const_inj "v_const(c1) = v_const(c2) ==> c1 = c2"
+  v_clos_inj 
+    " v_clos(<|ev1,e1,ve1|>) = v_clos(<|ev2,e2,ve2|>) ==> \
+\     ev1 = ev2 & e1 = e2 & ve1 = ve2"
+  
+(* All constructors are distinct *)
+
+  v_disj_const_clos "~v_const(c) = v_clos(cl)"
+
+(* Strong elimination, induction on values, not needed yet ... *)
+
+
+(* 
+  Value environments bind variables to values. Only the following trivial
+  properties are needed.
+*)
+
+  ve_dom_owr "ve_dom(ve + {ev |-> v}) = ve_dom(ve) Un {ev}"
+ 
+  ve_app_owr1 "ve_app (ve + {ev |-> v}) ev=v"
+  ve_app_owr2 "~ev1=ev2 ==> ve_app (ve+{ev1 |-> v}) ev2=ve_app ve ev2"
+
+
+(* Type Environments bind variables to types. The following trivial
+properties are needed.  *)
+
+  te_dom_owr "te_dom(te + {ev |=> t}) = te_dom(te) Un {ev}"
+ 
+  te_app_owr1 "te_app (te + {ev |=> t}) ev=t"
+  te_app_owr2 "~ev1=ev2 ==> te_app (te+{ev1 |=> t}) ev2=te_app te ev2"
+
+
+(* The dynamic semantics is defined inductively by a set of inference
+rules.  These inference rules allows one to draw conclusions of the form ve
+|- e ---> v, read the expression e evaluates to the value v in the value
+environment ve.  Therefore the relation _ |- _ ---> _ is defined in Isabelle
+as the least fixpoint of the functor eval_fun below.  From this definition
+introduction rules and a strong elimination (induction) rule can be
+derived.  
+*)
+
+  eval_fun_def 
+    " eval_fun(s) == \
+\     { pp. \
+\       (? ve c. pp=<<ve,e_const(c)>,v_const(c)>) | \
+\       (? ve x. pp=<<ve,e_var(x)>,ve_app ve x> & x:ve_dom(ve)) |\
+\       (? ve e x. pp=<<ve,fn x => e>,v_clos(<|x,e,ve|>)>)| \
+\       ( ? ve e x f cl. \
+\           pp=<<ve,fix f(x) = e>,v_clos(cl)> & \
+\           cl=<|x, e, ve+{f |-> v_clos(cl)} |>  \
+\       ) | \
+\       ( ? ve e1 e2 c1 c2. \
+\           pp=<<ve,e1 @ e2>,v_const(c_app c1 c2)> & \
+\           <<ve,e1>,v_const(c1)>:s & <<ve,e2>,v_const(c2)>:s \
+\       ) | \
+\       ( ? ve vem e1 e2 em xm v v2. \
+\           pp=<<ve,e1 @ e2>,v> & \
+\           <<ve,e1>,v_clos(<|xm,em,vem|>)>:s & \
+\           <<ve,e2>,v2>:s & \
+\           <<vem+{xm |-> v2},em>,v>:s \
+\       ) \
+\     }"
+
+  eval_rel_def "eval_rel == lfp(eval_fun)"
+  eval_def "ve |- e ---> v == <<ve,e>,v>:eval_rel"
+
+(* The static semantics is defined in the same way as the dynamic
+semantics.  The relation te |- e ===> t express the expression e has the
+type t in the type environment te.
+*)
+
+  elab_fun_def 
+  "elab_fun(s) == \
+\  { pp. \
+\    (? te c t. pp=<<te,e_const(c)>,t> & c isof t) | \
+\    (? te x. pp=<<te,e_var(x)>,te_app te x> & x:te_dom(te)) | \
+\    (? te x e t1 t2. pp=<<te,fn x => e>,t1->t2> & <<te+{x |=> t1},e>,t2>:s) | \
+\    (? te f x e t1 t2. \
+\       pp=<<te,fix f(x)=e>,t1->t2> & <<te+{f |=> t1->t2}+{x |=> t1},e>,t2>:s \
+\    ) | \
+\    (? te e1 e2 t1 t2. \
+\       pp=<<te,e1 @ e2>,t2> & <<te,e1>,t1->t2>:s & <<te,e2>,t1>:s \
+\    ) \
+\  }"
+
+  elab_rel_def "elab_rel == lfp(elab_fun)"
+  elab_def "te |- e ===> t == <<te,e>,t>:elab_rel"
+
+(* The original correspondence relation *)
+
+  isof_env_def 
+    " ve isofenv te == \
+\     ve_dom(ve) = te_dom(te) & \
+\     ( ! x. \
+\         x:ve_dom(ve) --> \
+\         (? c.ve_app ve x = v_const(c) & c isof te_app te x) \
+\     ) \
+\   "
+
+  isof_app "[| c1 isof t1->t2; c2 isof t1 |] ==> c_app c1 c2 isof t2"
+
+(* The extented correspondence relation *)
+
+  hasty_fun_def
+    " hasty_fun(r) == \
+\     { p. \
+\       ( ? c t. p = <v_const(c),t> & c isof t) | \
+\       ( ? ev e ve t te. \
+\           p = <v_clos(<|ev,e,ve|>),t> & \
+\           te |- fn ev => e ===> t & \
+\           ve_dom(ve) = te_dom(te) & \
+\           (! ev1.ev1:ve_dom(ve) --> <ve_app ve ev1,te_app te ev1> : r) \
+\       ) \
+\     } \
+\   "
+
+  hasty_rel_def "hasty_rel == gfp(hasty_fun)"
+  hasty_def "v hasty t == <v,t> : hasty_rel"
+  hasty_env_def 
+    " ve hastyenv te == \
+\     ve_dom(ve) = te_dom(te) & \
+\     (! x. x: ve_dom(ve) --> ve_app ve x hasty te_app te x)"
+
+end