src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy
changeset 62049 b0f941e207cf
parent 61973 0c7e865fa7cb
child 62375 670063003ad3
--- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Sun Jan 03 21:45:34 2016 +0100
+++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Mon Jan 04 17:45:36 2016 +0100
@@ -316,46 +316,6 @@
   apply (metis INF_absorb centre_in_ball)
   done
 
-lemma continuous_on_inverse_ereal: "continuous_on {0::ereal ..} inverse"
-  unfolding continuous_on_def
-proof clarsimp
-  fix x :: ereal assume "0 \<le> x"
-  moreover have "at 0 within {0 ..} = at_right (0::ereal)"
-    by (auto simp: filter_eq_iff eventually_at_filter le_less)
-  moreover have "0 < x \<Longrightarrow> at x within {0 ..} = at x"
-    using at_within_interior[of x "{0 ..}"] by (simp add: interior_Ici[of "- \<infinity>"])
-  ultimately show "(inverse \<longlongrightarrow> inverse x) (at x within {0..})"
-    by (auto simp: le_less inverse_ereal_tendsto_at_right_0 inverse_ereal_tendsto_pos)
-qed
-
-
-lemma Liminf_inverse_ereal:
-  assumes nneg: "\<forall>\<^sub>F x in F. f x \<ge> (0 :: ereal)" and "F \<noteq> bot"
-  shows "Liminf F (\<lambda>n. inverse (f n)) = inverse (Limsup F f)"
-proof -
-  def I \<equiv> "\<lambda>x::ereal. if x \<le> 0 then \<infinity> else inverse x"
-  have "Liminf F (\<lambda>n. I (f n)) = I (Limsup F f)"
-  proof (rule Liminf_compose_continuous_antimono)
-    have "continuous_on ({.. 0} \<union> {0 ..}) I"
-      unfolding I_def by (intro continuous_on_cases) (auto intro: continuous_on_const continuous_on_inverse_ereal)
-    also have "{.. 0} \<union> {0::ereal ..} = UNIV"
-      by auto
-    finally show "continuous_on UNIV I" .
-    show "antimono I"
-      unfolding antimono_def I_def by (auto intro: ereal_inverse_antimono)
-  qed fact
-  also have "Liminf F (\<lambda>n. I (f n)) = Liminf F (\<lambda>n. inverse (f n))"
-  proof (rule Liminf_eq)
-    show "\<forall>\<^sub>F x in F. I (f x) = inverse (f x)"
-      using nneg by eventually_elim (auto simp: I_def)
-  qed
-  also have "0 \<le> Limsup F f"
-    by (intro le_Limsup) fact+
-  then have "I (Limsup F f) = inverse (Limsup F f)"
-    by (auto simp: I_def)
-  finally show ?thesis .
-qed
-
 subsection \<open>monoset\<close>
 
 definition (in order) mono_set: