--- a/src/HOL/Finite_Set.thy Mon Aug 29 16:51:39 2005 +0200
+++ b/src/HOL/Finite_Set.thy Tue Aug 30 12:47:53 2005 +0200
@@ -806,11 +806,11 @@
written @{text"\<Sum>x\<in>A. e"}. *}
syntax
- "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)
syntax (xsymbols)
- "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
syntax (HTML output)
- "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
+ "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
translations -- {* Beware of argument permutation! *}
"SUM i:A. b" == "setsum (%i. b) A"
@@ -820,11 +820,11 @@
@{text"\<Sum>x|P. e"}. *}
syntax
- "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
syntax (xsymbols)
- "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
syntax (HTML output)
- "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
+ "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
translations
"SUM x|P. t" => "setsum (%x. t) {x. P}"
@@ -930,13 +930,12 @@
(*But we can't get rid of finite A. If infinite, although the lhs is 0,
the rhs need not be, since SIGMA A B could still be finite.*)
lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
- (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) =
- (\<Sum>z\<in>(SIGMA x:A. B x). f (fst z) (snd z))"
+ (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)"
by(simp add:setsum_def AC_add.fold_Sigma split_def cong:setsum_cong)
text{*Here we can eliminate the finiteness assumptions, by cases.*}
lemma setsum_cartesian_product:
- "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>z\<in>A <*> B. f (fst z) (snd z))"
+ "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)"
apply (cases "finite A")
apply (cases "finite B")
apply (simp add: setsum_Sigma)
@@ -1255,13 +1254,13 @@
lemma setsum_commute:
"(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)"
proof (simp add: setsum_cartesian_product)
- have "(\<Sum>z\<in>A \<times> B. f (fst z) (snd z)) =
- (\<Sum>z\<in>(%(i, j). (j, i)) ` (A \<times> B). f (snd z) (fst z))"
+ have "(\<Sum>(x,y) \<in> A <*> B. f x y) =
+ (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)"
(is "?s = _")
apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on)
apply (simp add: split_def)
done
- also have "... = (\<Sum>z\<in>B \<times> A. f (snd z) (fst z))"
+ also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)"
(is "_ = ?t")
apply (simp add: swap_product)
done
@@ -1276,11 +1275,11 @@
"setprod f A == if finite A then fold (op *) f 1 A else 1"
syntax
- "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)
syntax (xsymbols)
- "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
syntax (HTML output)
- "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
+ "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
translations -- {* Beware of argument permutation! *}
"PROD i:A. b" == "setprod (%i. b) A"
@@ -1290,11 +1289,11 @@
@{text"\<Prod>x|P. e"}. *}
syntax
- "_qsetprod" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
syntax (xsymbols)
- "_qsetprod" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
syntax (HTML output)
- "_qsetprod" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
+ "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
translations
"PROD x|P. t" => "setprod (%x. t) {x. P}"
@@ -1386,12 +1385,12 @@
lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
(\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) =
- (\<Prod>z\<in>(SIGMA x:A. B x). f (fst z) (snd z))"
+ (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)"
by(simp add:setprod_def AC_mult.fold_Sigma split_def cong:setprod_cong)
text{*Here we can eliminate the finiteness assumptions, by cases.*}
lemma setprod_cartesian_product:
- "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>z\<in>(A <*> B). f (fst z) (snd z))"
+ "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)"
apply (cases "finite A")
apply (cases "finite B")
apply (simp add: setprod_Sigma)