--- a/src/HOL/Import/HOL/HOL4Word32.thy Mon Sep 26 15:56:28 2005 +0200
+++ b/src/HOL/Import/HOL/HOL4Word32.thy Mon Sep 26 16:10:19 2005 +0200
@@ -8,78 +8,54 @@
DIV2 :: "nat => nat"
defs
- DIV2_primdef: "DIV2 == %n::nat. n div (2::nat)"
+ DIV2_primdef: "DIV2 == %n::nat. n div 2"
-lemma DIV2_def: "ALL n::nat. DIV2 n = n div (2::nat)"
+lemma DIV2_def: "ALL n::nat. DIV2 n = n div 2"
by (import bits DIV2_def)
consts
TIMES_2EXP :: "nat => nat => nat"
defs
- TIMES_2EXP_primdef: "TIMES_2EXP == %(x::nat) n::nat. n * (2::nat) ^ x"
+ TIMES_2EXP_primdef: "TIMES_2EXP == %(x::nat) n::nat. n * 2 ^ x"
-lemma TIMES_2EXP_def: "ALL (x::nat) n::nat. TIMES_2EXP x n = n * (2::nat) ^ x"
+lemma TIMES_2EXP_def: "ALL (x::nat) n::nat. TIMES_2EXP x n = n * 2 ^ x"
by (import bits TIMES_2EXP_def)
consts
DIV_2EXP :: "nat => nat => nat"
defs
- DIV_2EXP_primdef: "DIV_2EXP == %(x::nat) n::nat. n div (2::nat) ^ x"
+ DIV_2EXP_primdef: "DIV_2EXP == %(x::nat) n::nat. n div 2 ^ x"
-lemma DIV_2EXP_def: "ALL (x::nat) n::nat. DIV_2EXP x n = n div (2::nat) ^ x"
+lemma DIV_2EXP_def: "ALL (x::nat) n::nat. DIV_2EXP x n = n div 2 ^ x"
by (import bits DIV_2EXP_def)
consts
MOD_2EXP :: "nat => nat => nat"
defs
- MOD_2EXP_primdef: "MOD_2EXP == %(x::nat) n::nat. n mod (2::nat) ^ x"
+ MOD_2EXP_primdef: "MOD_2EXP == %(x::nat) n::nat. n mod 2 ^ x"
-lemma MOD_2EXP_def: "ALL (x::nat) n::nat. MOD_2EXP x n = n mod (2::nat) ^ x"
+lemma MOD_2EXP_def: "ALL (x::nat) n::nat. MOD_2EXP x n = n mod 2 ^ x"
by (import bits MOD_2EXP_def)
consts
DIVMOD_2EXP :: "nat => nat => nat * nat"
defs
- DIVMOD_2EXP_primdef: "DIVMOD_2EXP == %(x::nat) n::nat. (n div (2::nat) ^ x, n mod (2::nat) ^ x)"
+ DIVMOD_2EXP_primdef: "DIVMOD_2EXP == %(x::nat) n::nat. (n div 2 ^ x, n mod 2 ^ x)"
-lemma DIVMOD_2EXP_def: "ALL (x::nat) n::nat.
- DIVMOD_2EXP x n = (n div (2::nat) ^ x, n mod (2::nat) ^ x)"
+lemma DIVMOD_2EXP_def: "ALL (x::nat) n::nat. DIVMOD_2EXP x n = (n div 2 ^ x, n mod 2 ^ x)"
by (import bits DIVMOD_2EXP_def)
consts
SBIT :: "bool => nat => nat"
defs
- SBIT_primdef: "(op ==::(bool => nat => nat) => (bool => nat => nat) => prop)
- (SBIT::bool => nat => nat)
- (%(b::bool) n::nat.
- (If::bool => nat => nat => nat) b
- ((op ^::nat => nat => nat)
- ((number_of::bin => nat)
- ((op BIT::bin => bit => bin)
- ((op BIT::bin => bit => bin) (Numeral.Pls::bin) (bit.B1::bit))
- (bit.B0::bit)))
- n)
- (0::nat))"
+ SBIT_primdef: "SBIT == %(b::bool) n::nat. if b then 2 ^ n else 0"
-lemma SBIT_def: "(All::(bool => bool) => bool)
- (%b::bool.
- (All::(nat => bool) => bool)
- (%n::nat.
- (op =::nat => nat => bool) ((SBIT::bool => nat => nat) b n)
- ((If::bool => nat => nat => nat) b
- ((op ^::nat => nat => nat)
- ((number_of::bin => nat)
- ((op BIT::bin => bit => bin)
- ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
- (bit.B1::bit))
- (bit.B0::bit)))
- n)
- (0::nat))))"
+lemma SBIT_def: "ALL (b::bool) n::nat. SBIT b n = (if b then 2 ^ n else 0)"
by (import bits SBIT_def)
consts
@@ -94,9 +70,9 @@
constdefs
bit :: "nat => nat => bool"
- "bit == %(b::nat) n::nat. BITS b b n = (1::nat)"
+ "bit == %(b::nat) n::nat. BITS b b n = 1"
-lemma BIT_def: "ALL (b::nat) n::nat. bit b n = (BITS b b n = (1::nat))"
+lemma BIT_def: "ALL (b::nat) n::nat. bit b n = (BITS b b n = 1)"
by (import bits BIT_def)
consts
@@ -113,65 +89,125 @@
LSBn :: "nat => bool"
defs
- LSBn_primdef: "LSBn == bit (0::nat)"
+ LSBn_primdef: "LSBn == bit 0"
-lemma LSBn_def: "LSBn = bit (0::nat)"
+lemma LSBn_def: "LSBn = bit 0"
by (import bits LSBn_def)
consts
BITWISE :: "nat => (bool => bool => bool) => nat => nat => nat"
-specification (BITWISE_primdef: BITWISE) BITWISE_def: "(ALL (oper::bool => bool => bool) (x::nat) y::nat.
- BITWISE (0::nat) oper x y = (0::nat)) &
+specification (BITWISE_primdef: BITWISE) BITWISE_def: "(ALL (oper::bool => bool => bool) (x::nat) y::nat. BITWISE 0 oper x y = 0) &
(ALL (n::nat) (oper::bool => bool => bool) (x::nat) y::nat.
BITWISE (Suc n) oper x y =
BITWISE n oper x y + SBIT (oper (bit n x) (bit n y)) n)"
by (import bits BITWISE_def)
-lemma DIV1: "ALL x::nat. x div (1::nat) = x"
+lemma DIV1: "ALL x::nat. x div 1 = x"
by (import bits DIV1)
-lemma SUC_SUB: "Suc (a::nat) - a = (1::nat)"
+lemma SUC_SUB: "Suc (a::nat) - a = 1"
by (import bits SUC_SUB)
-lemma DIV_MULT_1: "ALL (r::nat) n::nat. r < n --> (n + r) div n = (1::nat)"
+lemma DIV_MULT_1: "ALL (r::nat) n::nat. r < n --> (n + r) div n = 1"
by (import bits DIV_MULT_1)
-lemma ZERO_LT_TWOEXP: "ALL n::nat. (0::nat) < (2::nat) ^ n"
+lemma ZERO_LT_TWOEXP: "(All::(nat => bool) => bool)
+ (%n::nat.
+ (op <::nat => nat => bool) (0::nat)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin) (bit.B1::bit))
+ (bit.B0::bit)))
+ n))"
by (import bits ZERO_LT_TWOEXP)
-lemma MOD_2EXP_LT: "ALL (n::nat) k::nat. k mod (2::nat) ^ n < (2::nat) ^ n"
+lemma MOD_2EXP_LT: "ALL (n::nat) k::nat. k mod 2 ^ n < 2 ^ n"
by (import bits MOD_2EXP_LT)
-lemma TWOEXP_DIVISION: "ALL (n::nat) k::nat.
- k = k div (2::nat) ^ n * (2::nat) ^ n + k mod (2::nat) ^ n"
+lemma TWOEXP_DIVISION: "ALL (n::nat) k::nat. k = k div 2 ^ n * 2 ^ n + k mod 2 ^ n"
by (import bits TWOEXP_DIVISION)
-lemma TWOEXP_MONO: "ALL (a::nat) b::nat. a < b --> (2::nat) ^ a < (2::nat) ^ b"
+lemma TWOEXP_MONO: "(All::(nat => bool) => bool)
+ (%a::nat.
+ (All::(nat => bool) => bool)
+ (%b::nat.
+ (op -->::bool => bool => bool) ((op <::nat => nat => bool) a b)
+ ((op <::nat => nat => bool)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ a)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ b))))"
by (import bits TWOEXP_MONO)
-lemma TWOEXP_MONO2: "ALL (a::nat) b::nat. a <= b --> (2::nat) ^ a <= (2::nat) ^ b"
+lemma TWOEXP_MONO2: "(All::(nat => bool) => bool)
+ (%a::nat.
+ (All::(nat => bool) => bool)
+ (%b::nat.
+ (op -->::bool => bool => bool) ((op <=::nat => nat => bool) a b)
+ ((op <=::nat => nat => bool)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ a)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ b))))"
by (import bits TWOEXP_MONO2)
-lemma EXP_SUB_LESS_EQ: "ALL (a::nat) b::nat. (2::nat) ^ (a - b) <= (2::nat) ^ a"
+lemma EXP_SUB_LESS_EQ: "(All::(nat => bool) => bool)
+ (%a::nat.
+ (All::(nat => bool) => bool)
+ (%b::nat.
+ (op <=::nat => nat => bool)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ ((op -::nat => nat => nat) a b))
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ a)))"
by (import bits EXP_SUB_LESS_EQ)
lemma BITS_THM: "ALL (x::nat) (xa::nat) xb::nat.
- BITS x xa xb = xb div (2::nat) ^ xa mod (2::nat) ^ (Suc x - xa)"
+ BITS x xa xb = xb div 2 ^ xa mod 2 ^ (Suc x - xa)"
by (import bits BITS_THM)
-lemma BITSLT_THM: "ALL (h::nat) (l::nat) n::nat. BITS h l n < (2::nat) ^ (Suc h - l)"
+lemma BITSLT_THM: "ALL (h::nat) (l::nat) n::nat. BITS h l n < 2 ^ (Suc h - l)"
by (import bits BITSLT_THM)
-lemma DIV_MULT_LEM: "ALL (m::nat) n::nat. (0::nat) < n --> m div n * n <= m"
+lemma DIV_MULT_LEM: "ALL (m::nat) n::nat. 0 < n --> m div n * n <= m"
by (import bits DIV_MULT_LEM)
-lemma MOD_2EXP_LEM: "ALL (n::nat) x::nat.
- n mod (2::nat) ^ x = n - n div (2::nat) ^ x * (2::nat) ^ x"
+lemma MOD_2EXP_LEM: "ALL (n::nat) x::nat. n mod 2 ^ x = n - n div 2 ^ x * 2 ^ x"
by (import bits MOD_2EXP_LEM)
-lemma BITS2_THM: "ALL (h::nat) (l::nat) n::nat.
- BITS h l n = n mod (2::nat) ^ Suc h div (2::nat) ^ l"
+lemma BITS2_THM: "ALL (h::nat) (l::nat) n::nat. BITS h l n = n mod 2 ^ Suc h div 2 ^ l"
by (import bits BITS2_THM)
lemma BITS_COMP_THM: "ALL (h1::nat) (l1::nat) (h2::nat) (l2::nat) n::nat.
@@ -179,71 +215,65 @@
by (import bits BITS_COMP_THM)
lemma BITS_DIV_THM: "ALL (h::nat) (l::nat) (x::nat) n::nat.
- BITS h l x div (2::nat) ^ n = BITS h (l + n) x"
+ BITS h l x div 2 ^ n = BITS h (l + n) x"
by (import bits BITS_DIV_THM)
-lemma BITS_LT_HIGH: "ALL (h::nat) (l::nat) n::nat.
- n < (2::nat) ^ Suc h --> BITS h l n = n div (2::nat) ^ l"
+lemma BITS_LT_HIGH: "ALL (h::nat) (l::nat) n::nat. n < 2 ^ Suc h --> BITS h l n = n div 2 ^ l"
by (import bits BITS_LT_HIGH)
-lemma BITS_ZERO: "ALL (h::nat) (l::nat) n::nat. h < l --> BITS h l n = (0::nat)"
+lemma BITS_ZERO: "ALL (h::nat) (l::nat) n::nat. h < l --> BITS h l n = 0"
by (import bits BITS_ZERO)
-lemma BITS_ZERO2: "ALL (h::nat) l::nat. BITS h l (0::nat) = (0::nat)"
+lemma BITS_ZERO2: "ALL (h::nat) l::nat. BITS h l 0 = 0"
by (import bits BITS_ZERO2)
-lemma BITS_ZERO3: "ALL (h::nat) x::nat. BITS h (0::nat) x = x mod (2::nat) ^ Suc h"
+lemma BITS_ZERO3: "ALL (h::nat) x::nat. BITS h 0 x = x mod 2 ^ Suc h"
by (import bits BITS_ZERO3)
lemma BITS_COMP_THM2: "ALL (h1::nat) (l1::nat) (h2::nat) (l2::nat) n::nat.
BITS h2 l2 (BITS h1 l1 n) = BITS (min h1 (h2 + l1)) (l2 + l1) n"
by (import bits BITS_COMP_THM2)
-lemma NOT_MOD2_LEM: "ALL n::nat. (n mod (2::nat) ~= (0::nat)) = (n mod (2::nat) = (1::nat))"
+lemma NOT_MOD2_LEM: "ALL n::nat. (n mod 2 ~= 0) = (n mod 2 = 1)"
by (import bits NOT_MOD2_LEM)
-lemma NOT_MOD2_LEM2: "ALL (n::nat) a::'a::type.
- (n mod (2::nat) ~= (1::nat)) = (n mod (2::nat) = (0::nat))"
+lemma NOT_MOD2_LEM2: "ALL (n::nat) a::'a::type. (n mod 2 ~= 1) = (n mod 2 = 0)"
by (import bits NOT_MOD2_LEM2)
-lemma EVEN_MOD2_LEM: "ALL n::nat. EVEN n = (n mod (2::nat) = (0::nat))"
+lemma EVEN_MOD2_LEM: "ALL n::nat. EVEN n = (n mod 2 = 0)"
by (import bits EVEN_MOD2_LEM)
-lemma ODD_MOD2_LEM: "ALL n::nat. ODD n = (n mod (2::nat) = (1::nat))"
+lemma ODD_MOD2_LEM: "ALL n::nat. ODD n = (n mod 2 = 1)"
by (import bits ODD_MOD2_LEM)
lemma LSB_ODD: "LSBn = ODD"
by (import bits LSB_ODD)
-lemma DIV_MULT_THM: "ALL (x::nat) n::nat.
- n div (2::nat) ^ x * (2::nat) ^ x = n - n mod (2::nat) ^ x"
+lemma DIV_MULT_THM: "ALL (x::nat) n::nat. n div 2 ^ x * 2 ^ x = n - n mod 2 ^ x"
by (import bits DIV_MULT_THM)
-lemma DIV_MULT_THM2: "ALL x::nat. (2::nat) * (x div (2::nat)) = x - x mod (2::nat)"
+lemma DIV_MULT_THM2: "ALL x::nat. 2 * (x div 2) = x - x mod 2"
by (import bits DIV_MULT_THM2)
-lemma LESS_EQ_EXP_MULT: "ALL (a::nat) b::nat. a <= b --> (EX x::nat. (2::nat) ^ b = x * (2::nat) ^ a)"
+lemma LESS_EQ_EXP_MULT: "ALL (a::nat) b::nat. a <= b --> (EX x::nat. 2 ^ b = x * 2 ^ a)"
by (import bits LESS_EQ_EXP_MULT)
lemma SLICE_LEM1: "ALL (a::nat) (x::nat) y::nat.
- a div (2::nat) ^ (x + y) * (2::nat) ^ (x + y) =
- a div (2::nat) ^ x * (2::nat) ^ x -
- a div (2::nat) ^ x mod (2::nat) ^ y * (2::nat) ^ x"
+ a div 2 ^ (x + y) * 2 ^ (x + y) =
+ a div 2 ^ x * 2 ^ x - a div 2 ^ x mod 2 ^ y * 2 ^ x"
by (import bits SLICE_LEM1)
lemma SLICE_LEM2: "ALL (a::'a::type) (x::nat) y::nat.
- (n::nat) mod (2::nat) ^ (x + y) =
- n mod (2::nat) ^ x + n div (2::nat) ^ x mod (2::nat) ^ y * (2::nat) ^ x"
+ (n::nat) mod 2 ^ (x + y) = n mod 2 ^ x + n div 2 ^ x mod 2 ^ y * 2 ^ x"
by (import bits SLICE_LEM2)
-lemma SLICE_LEM3: "ALL (n::nat) (h::nat) l::nat.
- l < h --> n mod (2::nat) ^ Suc l <= n mod (2::nat) ^ h"
+lemma SLICE_LEM3: "ALL (n::nat) (h::nat) l::nat. l < h --> n mod 2 ^ Suc l <= n mod 2 ^ h"
by (import bits SLICE_LEM3)
-lemma SLICE_THM: "ALL (n::nat) (h::nat) l::nat. SLICE h l n = BITS h l n * (2::nat) ^ l"
+lemma SLICE_THM: "ALL (n::nat) (h::nat) l::nat. SLICE h l n = BITS h l n * 2 ^ l"
by (import bits SLICE_THM)
-lemma SLICELT_THM: "ALL (h::nat) (l::nat) n::nat. SLICE h l n < (2::nat) ^ Suc h"
+lemma SLICELT_THM: "ALL (h::nat) (l::nat) n::nat. SLICE h l n < 2 ^ Suc h"
by (import bits SLICELT_THM)
lemma BITS_SLICE_THM: "ALL (h::nat) (l::nat) n::nat. BITS h l (SLICE h l n) = BITS h l n"
@@ -253,44 +283,41 @@
h <= (h2::nat) --> BITS h2 l (SLICE h l n) = BITS h l n"
by (import bits BITS_SLICE_THM2)
-lemma MOD_2EXP_MONO: "ALL (n::nat) (h::nat) l::nat.
- l <= h --> n mod (2::nat) ^ l <= n mod (2::nat) ^ Suc h"
+lemma MOD_2EXP_MONO: "ALL (n::nat) (h::nat) l::nat. l <= h --> n mod 2 ^ l <= n mod 2 ^ Suc h"
by (import bits MOD_2EXP_MONO)
lemma SLICE_COMP_THM: "ALL (h::nat) (m::nat) (l::nat) n::nat.
Suc m <= h & l <= m --> SLICE h (Suc m) n + SLICE m l n = SLICE h l n"
by (import bits SLICE_COMP_THM)
-lemma SLICE_ZERO: "ALL (h::nat) (l::nat) n::nat. h < l --> SLICE h l n = (0::nat)"
+lemma SLICE_ZERO: "ALL (h::nat) (l::nat) n::nat. h < l --> SLICE h l n = 0"
by (import bits SLICE_ZERO)
lemma BIT_COMP_THM3: "ALL (h::nat) (m::nat) (l::nat) n::nat.
Suc m <= h & l <= m -->
- BITS h (Suc m) n * (2::nat) ^ (Suc m - l) + BITS m l n = BITS h l n"
+ BITS h (Suc m) n * 2 ^ (Suc m - l) + BITS m l n = BITS h l n"
by (import bits BIT_COMP_THM3)
-lemma NOT_BIT: "ALL (n::nat) a::nat. (~ bit n a) = (BITS n n a = (0::nat))"
+lemma NOT_BIT: "ALL (n::nat) a::nat. (~ bit n a) = (BITS n n a = 0)"
by (import bits NOT_BIT)
-lemma NOT_BITS: "ALL (n::nat) a::nat. (BITS n n a ~= (0::nat)) = (BITS n n a = (1::nat))"
+lemma NOT_BITS: "ALL (n::nat) a::nat. (BITS n n a ~= 0) = (BITS n n a = 1)"
by (import bits NOT_BITS)
-lemma NOT_BITS2: "ALL (n::nat) a::nat. (BITS n n a ~= (1::nat)) = (BITS n n a = (0::nat))"
+lemma NOT_BITS2: "ALL (n::nat) a::nat. (BITS n n a ~= 1) = (BITS n n a = 0)"
by (import bits NOT_BITS2)
lemma BIT_SLICE: "ALL (n::nat) (a::nat) b::nat.
(bit n a = bit n b) = (SLICE n n a = SLICE n n b)"
by (import bits BIT_SLICE)
-lemma BIT_SLICE_LEM: "ALL (y::nat) (x::nat) n::nat.
- SBIT (bit x n) (x + y) = SLICE x x n * (2::nat) ^ y"
+lemma BIT_SLICE_LEM: "ALL (y::nat) (x::nat) n::nat. SBIT (bit x n) (x + y) = SLICE x x n * 2 ^ y"
by (import bits BIT_SLICE_LEM)
lemma BIT_SLICE_THM: "ALL (x::nat) xa::nat. SBIT (bit x xa) x = SLICE x x xa"
by (import bits BIT_SLICE_THM)
-lemma SBIT_DIV: "ALL (b::bool) (m::nat) n::nat.
- n < m --> SBIT b (m - n) = SBIT b m div (2::nat) ^ n"
+lemma SBIT_DIV: "ALL (b::bool) (m::nat) n::nat. n < m --> SBIT b (m - n) = SBIT b m div 2 ^ n"
by (import bits SBIT_DIV)
lemma BITS_SUC: "ALL (h::nat) (l::nat) n::nat.
@@ -300,8 +327,7 @@
lemma BITS_SUC_THM: "ALL (h::nat) (l::nat) n::nat.
BITS (Suc h) l n =
- (if Suc h < l then 0::nat
- else SBIT (bit (Suc h) n) (Suc h - l) + BITS h l n)"
+ (if Suc h < l then 0 else SBIT (bit (Suc h) n) (Suc h - l) + BITS h l n)"
by (import bits BITS_SUC_THM)
lemma BIT_BITS_THM: "ALL (h::nat) (l::nat) (a::nat) b::nat.
@@ -310,12 +336,39 @@
by (import bits BIT_BITS_THM)
lemma BITWISE_LT_2EXP: "ALL (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
- BITWISE n oper a b < (2::nat) ^ n"
+ BITWISE n oper a b < 2 ^ n"
by (import bits BITWISE_LT_2EXP)
-lemma LESS_EXP_MULT2: "ALL (a::nat) b::nat.
- a < b -->
- (EX x::nat. (2::nat) ^ b = (2::nat) ^ (x + (1::nat)) * (2::nat) ^ a)"
+lemma LESS_EXP_MULT2: "(All::(nat => bool) => bool)
+ (%a::nat.
+ (All::(nat => bool) => bool)
+ (%b::nat.
+ (op -->::bool => bool => bool) ((op <::nat => nat => bool) a b)
+ ((Ex::(nat => bool) => bool)
+ (%x::nat.
+ (op =::nat => nat => bool)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ b)
+ ((op *::nat => nat => nat)
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ ((op +::nat => nat => nat) x (1::nat)))
+ ((op ^::nat => nat => nat)
+ ((number_of::bin => nat)
+ ((op BIT::bin => bit => bin)
+ ((op BIT::bin => bit => bin) (Numeral.Pls::bin)
+ (bit.B1::bit))
+ (bit.B0::bit)))
+ a))))))"
by (import bits LESS_EXP_MULT2)
lemma BITWISE_THM: "ALL (x::nat) (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
@@ -324,27 +377,21 @@
lemma BITWISE_COR: "ALL (x::nat) (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
x < n -->
- oper (bit x a) (bit x b) -->
- BITWISE n oper a b div (2::nat) ^ x mod (2::nat) = (1::nat)"
+ oper (bit x a) (bit x b) --> BITWISE n oper a b div 2 ^ x mod 2 = 1"
by (import bits BITWISE_COR)
lemma BITWISE_NOT_COR: "ALL (x::nat) (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
x < n -->
- ~ oper (bit x a) (bit x b) -->
- BITWISE n oper a b div (2::nat) ^ x mod (2::nat) = (0::nat)"
+ ~ oper (bit x a) (bit x b) --> BITWISE n oper a b div 2 ^ x mod 2 = 0"
by (import bits BITWISE_NOT_COR)
-lemma MOD_PLUS_RIGHT: "ALL n>0::nat. ALL (j::nat) k::nat. (j + k mod n) mod n = (j + k) mod n"
+lemma MOD_PLUS_RIGHT: "ALL n>0. ALL (j::nat) k::nat. (j + k mod n) mod n = (j + k) mod n"
by (import bits MOD_PLUS_RIGHT)
-lemma MOD_PLUS_1: "ALL n>0::nat.
- ALL x::nat. ((x + (1::nat)) mod n = (0::nat)) = (x mod n + (1::nat) = n)"
+lemma MOD_PLUS_1: "ALL n>0. ALL x::nat. ((x + 1) mod n = 0) = (x mod n + 1 = n)"
by (import bits MOD_PLUS_1)
-lemma MOD_ADD_1: "ALL n>0::nat.
- ALL x::nat.
- (x + (1::nat)) mod n ~= (0::nat) -->
- (x + (1::nat)) mod n = x mod n + (1::nat)"
+lemma MOD_ADD_1: "ALL n>0. ALL x::nat. (x + 1) mod n ~= 0 --> (x + 1) mod n = x mod n + 1"
by (import bits MOD_ADD_1)
;end_setup
@@ -379,18 +426,18 @@
MODw :: "nat => nat"
defs
- MODw_primdef: "MODw == %n::nat. n mod (2::nat) ^ WL"
+ MODw_primdef: "MODw == %n::nat. n mod 2 ^ WL"
-lemma MODw_def: "ALL n::nat. MODw n = n mod (2::nat) ^ WL"
+lemma MODw_def: "ALL n::nat. MODw n = n mod 2 ^ WL"
by (import word32 MODw_def)
consts
INw :: "nat => bool"
defs
- INw_primdef: "INw == %n::nat. n < (2::nat) ^ WL"
+ INw_primdef: "INw == %n::nat. n < 2 ^ WL"
-lemma INw_def: "ALL n::nat. INw n = (n < (2::nat) ^ WL)"
+lemma INw_def: "ALL n::nat. INw n = (n < 2 ^ WL)"
by (import word32 INw_def)
consts
@@ -429,7 +476,7 @@
lemma TOw_QT: "ALL a::nat. EQUIV (MODw a) a"
by (import word32 TOw_QT)
-lemma MODw_THM: "MODw = BITS HB (0::nat)"
+lemma MODw_THM: "MODw = BITS HB 0"
by (import word32 MODw_THM)
lemma MOD_ADD: "ALL (a::nat) b::nat. MODw (a + b) = MODw (MODw a + MODw b)"
@@ -442,16 +489,16 @@
AONE :: "nat"
defs
- AONE_primdef: "AONE == 1::nat"
+ AONE_primdef: "AONE == 1"
-lemma AONE_def: "AONE = (1::nat)"
+lemma AONE_def: "AONE = 1"
by (import word32 AONE_def)
-lemma ADD_QT: "(ALL n::nat. EQUIV ((0::nat) + n) n) &
+lemma ADD_QT: "(ALL n::nat. EQUIV (0 + n) n) &
(ALL (m::nat) n::nat. EQUIV (Suc m + n) (Suc (m + n)))"
by (import word32 ADD_QT)
-lemma ADD_0_QT: "ALL a::nat. EQUIV (a + (0::nat)) a"
+lemma ADD_0_QT: "ALL a::nat. EQUIV (a + 0) a"
by (import word32 ADD_0_QT)
lemma ADD_COMM_QT: "ALL (a::nat) b::nat. EQUIV (a + b) (b + a)"
@@ -460,30 +507,29 @@
lemma ADD_ASSOC_QT: "ALL (a::nat) (b::nat) c::nat. EQUIV (a + (b + c)) (a + b + c)"
by (import word32 ADD_ASSOC_QT)
-lemma MULT_QT: "(ALL n::nat. EQUIV ((0::nat) * n) (0::nat)) &
+lemma MULT_QT: "(ALL n::nat. EQUIV (0 * n) 0) &
(ALL (m::nat) n::nat. EQUIV (Suc m * n) (m * n + n))"
by (import word32 MULT_QT)
lemma ADD1_QT: "ALL m::nat. EQUIV (Suc m) (m + AONE)"
by (import word32 ADD1_QT)
-lemma ADD_CLAUSES_QT: "(ALL m::nat. EQUIV ((0::nat) + m) m) &
-(ALL m::nat. EQUIV (m + (0::nat)) m) &
+lemma ADD_CLAUSES_QT: "(ALL m::nat. EQUIV (0 + m) m) &
+(ALL m::nat. EQUIV (m + 0) m) &
(ALL (m::nat) n::nat. EQUIV (Suc m + n) (Suc (m + n))) &
(ALL (m::nat) n::nat. EQUIV (m + Suc n) (Suc (m + n)))"
by (import word32 ADD_CLAUSES_QT)
-lemma SUC_EQUIV_COMP: "ALL (a::nat) b::nat.
- EQUIV (Suc a) b --> EQUIV a (b + ((2::nat) ^ WL - (1::nat)))"
+lemma SUC_EQUIV_COMP: "ALL (a::nat) b::nat. EQUIV (Suc a) b --> EQUIV a (b + (2 ^ WL - 1))"
by (import word32 SUC_EQUIV_COMP)
lemma INV_SUC_EQ_QT: "ALL (m::nat) n::nat. EQUIV (Suc m) (Suc n) = EQUIV m n"
by (import word32 INV_SUC_EQ_QT)
-lemma ADD_INV_0_QT: "ALL (m::nat) n::nat. EQUIV (m + n) m --> EQUIV n (0::nat)"
+lemma ADD_INV_0_QT: "ALL (m::nat) n::nat. EQUIV (m + n) m --> EQUIV n 0"
by (import word32 ADD_INV_0_QT)
-lemma ADD_INV_0_EQ_QT: "ALL (m::nat) n::nat. EQUIV (m + n) m = EQUIV n (0::nat)"
+lemma ADD_INV_0_EQ_QT: "ALL (m::nat) n::nat. EQUIV (m + n) m = EQUIV n 0"
by (import word32 ADD_INV_0_EQ_QT)
lemma EQ_ADD_LCANCEL_QT: "ALL (m::nat) (n::nat) p::nat. EQUIV (m + n) (m + p) = EQUIV n p"
@@ -502,8 +548,8 @@
by (import word32 MULT_COMM_QT)
lemma MULT_CLAUSES_QT: "ALL (m::nat) n::nat.
- EQUIV ((0::nat) * m) (0::nat) &
- EQUIV (m * (0::nat)) (0::nat) &
+ EQUIV (0 * m) 0 &
+ EQUIV (m * 0) 0 &
EQUIV (AONE * m) m &
EQUIV (m * AONE) m &
EQUIV (Suc m * n) (m * n + n) & EQUIV (m * Suc n) (m + m * n)"
@@ -522,21 +568,21 @@
ONE_COMP :: "nat => nat"
defs
- ONE_COMP_primdef: "ONE_COMP == %x::nat. (2::nat) ^ WL - (1::nat) - MODw x"
+ ONE_COMP_primdef: "ONE_COMP == %x::nat. 2 ^ WL - 1 - MODw x"
-lemma ONE_COMP_def: "ALL x::nat. ONE_COMP x = (2::nat) ^ WL - (1::nat) - MODw x"
+lemma ONE_COMP_def: "ALL x::nat. ONE_COMP x = 2 ^ WL - 1 - MODw x"
by (import word32 ONE_COMP_def)
consts
TWO_COMP :: "nat => nat"
defs
- TWO_COMP_primdef: "TWO_COMP == %x::nat. (2::nat) ^ WL - MODw x"
+ TWO_COMP_primdef: "TWO_COMP == %x::nat. 2 ^ WL - MODw x"
-lemma TWO_COMP_def: "ALL x::nat. TWO_COMP x = (2::nat) ^ WL - MODw x"
+lemma TWO_COMP_def: "ALL x::nat. TWO_COMP x = 2 ^ WL - MODw x"
by (import word32 TWO_COMP_def)
-lemma ADD_TWO_COMP_QT: "ALL a::nat. EQUIV (MODw a + TWO_COMP a) (0::nat)"
+lemma ADD_TWO_COMP_QT: "ALL a::nat. EQUIV (MODw a + TWO_COMP a) 0"
by (import word32 ADD_TWO_COMP_QT)
lemma TWO_COMP_ONE_COMP_QT: "ALL a::nat. EQUIV (TWO_COMP a) (ONE_COMP a + AONE)"
@@ -557,8 +603,7 @@
((EQUIV::nat => nat => bool) x xa)))"
by (import word32 BIT_EQUIV_THM)
-lemma BITS_SUC2: "ALL (n::nat) a::nat.
- BITS (Suc n) (0::nat) a = SLICE (Suc n) (Suc n) a + BITS n (0::nat) a"
+lemma BITS_SUC2: "ALL (n::nat) a::nat. BITS (Suc n) 0 a = SLICE (Suc n) (Suc n) a + BITS n 0 a"
by (import word32 BITS_SUC2)
lemma BITWISE_ONE_COMP_THM: "ALL (a::nat) b::nat. BITWISE WL (%(x::bool) y::bool. ~ x) a b = ONE_COMP a"
@@ -598,9 +643,9 @@
COMP0 :: "nat"
defs
- COMP0_primdef: "COMP0 == ONE_COMP (0::nat)"
+ COMP0_primdef: "COMP0 == ONE_COMP 0"
-lemma COMP0_def: "COMP0 = ONE_COMP (0::nat)"
+lemma COMP0_def: "COMP0 = ONE_COMP 0"
by (import word32 COMP0_def)
lemma BITWISE_THM2: "(All::(nat => bool) => bool)
@@ -655,7 +700,7 @@
lemma OR_COMP_QT: "ALL a::nat. EQUIV (OR a (ONE_COMP a)) COMP0"
by (import word32 OR_COMP_QT)
-lemma AND_COMP_QT: "ALL a::nat. EQUIV (AND a (ONE_COMP a)) (0::nat)"
+lemma AND_COMP_QT: "ALL a::nat. EQUIV (AND a (ONE_COMP a)) 0"
by (import word32 AND_COMP_QT)
lemma ONE_COMP_QT: "ALL a::nat. EQUIV (ONE_COMP (ONE_COMP a)) a"
@@ -683,16 +728,14 @@
by (import word32 MSB_WELLDEF)
lemma BITWISE_ISTEP: "ALL (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
- (0::nat) < n -->
- BITWISE n oper (a div (2::nat)) (b div (2::nat)) =
- BITWISE n oper a b div (2::nat) +
- SBIT (oper (bit n a) (bit n b)) (n - (1::nat))"
+ 0 < n -->
+ BITWISE n oper (a div 2) (b div 2) =
+ BITWISE n oper a b div 2 + SBIT (oper (bit n a) (bit n b)) (n - 1)"
by (import word32 BITWISE_ISTEP)
lemma BITWISE_EVAL: "ALL (n::nat) (oper::bool => bool => bool) (a::nat) b::nat.
BITWISE (Suc n) oper a b =
- (2::nat) * BITWISE n oper (a div (2::nat)) (b div (2::nat)) +
- SBIT (oper (LSBn a) (LSBn b)) (0::nat)"
+ 2 * BITWISE n oper (a div 2) (b div 2) + SBIT (oper (LSBn a) (LSBn b)) 0"
by (import word32 BITWISE_EVAL)
lemma BITWISE_WELLDEF: "ALL (n::nat) (oper::bool => bool => bool) (a::nat) (b::nat) (c::nat) d::nat.
@@ -728,9 +771,9 @@
LSR_ONE :: "nat => nat"
defs
- LSR_ONE_primdef: "LSR_ONE == %a::nat. MODw a div (2::nat)"
+ LSR_ONE_primdef: "LSR_ONE == %a::nat. MODw a div 2"
-lemma LSR_ONE_def: "ALL a::nat. LSR_ONE a = MODw a div (2::nat)"
+lemma LSR_ONE_def: "ALL a::nat. LSR_ONE a = MODw a div 2"
by (import word32 LSR_ONE_def)
consts
@@ -772,7 +815,7 @@
lemma RRX_WELLDEF: "ALL (a::nat) (b::nat) c::bool. EQUIV a b --> EQUIV (RRXn c a) (RRXn c b)"
by (import word32 RRX_WELLDEF)
-lemma LSR_ONE: "LSR_ONE = BITS HB (1::nat)"
+lemma LSR_ONE: "LSR_ONE = BITS HB 1"
by (import word32 LSR_ONE)
typedef (open) word32 = "{x::nat => bool. EX xa::nat. x = EQUIV xa}"
@@ -793,9 +836,9 @@
w_0 :: "word32"
defs
- w_0_primdef: "w_0 == mk_word32 (EQUIV (0::nat))"
+ w_0_primdef: "w_0 == mk_word32 (EQUIV 0)"
-lemma w_0_def: "w_0 = mk_word32 (EQUIV (0::nat))"
+lemma w_0_def: "w_0 = mk_word32 (EQUIV 0)"
by (import word32 w_0_def)
consts
@@ -1081,10 +1124,10 @@
word_1comp (bitwise_or x xa) = bitwise_and (word_1comp x) (word_1comp xa)"
by (import word32 DE_MORGAN_THMw)
-lemma w_0: "w_0 = n2w (0::nat)"
+lemma w_0: "w_0 = n2w 0"
by (import word32 w_0)
-lemma w_1: "w_1 = n2w (1::nat)"
+lemma w_1: "w_1 = n2w 1"
by (import word32 w_1)
lemma w_T: "w_T =
@@ -1139,9 +1182,9 @@
constdefs
word_lsl :: "word32 => nat => word32"
- "word_lsl == %(a::word32) n::nat. word_mul a (n2w ((2::nat) ^ n))"
+ "word_lsl == %(a::word32) n::nat. word_mul a (n2w (2 ^ n))"
-lemma word_lsl: "ALL (a::word32) n::nat. word_lsl a n = word_mul a (n2w ((2::nat) ^ n))"
+lemma word_lsl: "ALL (a::word32) n::nat. word_lsl a n = word_mul a (n2w (2 ^ n))"
by (import word32 word_lsl)
constdefs
@@ -1320,14 +1363,13 @@
lemma LSL_LIMIT: "ALL (w::word32) n::nat. HB < n --> word_lsl w n = w_0"
by (import word32 LSL_LIMIT)
-lemma MOD_MOD_DIV: "ALL (a::nat) b::nat. INw (MODw a div (2::nat) ^ b)"
+lemma MOD_MOD_DIV: "ALL (a::nat) b::nat. INw (MODw a div 2 ^ b)"
by (import word32 MOD_MOD_DIV)
-lemma MOD_MOD_DIV_2EXP: "ALL (a::nat) n::nat.
- MODw (MODw a div (2::nat) ^ n) div (2::nat) = MODw a div (2::nat) ^ Suc n"
+lemma MOD_MOD_DIV_2EXP: "ALL (a::nat) n::nat. MODw (MODw a div 2 ^ n) div 2 = MODw a div 2 ^ Suc n"
by (import word32 MOD_MOD_DIV_2EXP)
-lemma LSR_EVAL: "ALL n::nat. word_lsr (n2w (a::nat)) n = n2w (MODw a div (2::nat) ^ n)"
+lemma LSR_EVAL: "ALL n::nat. word_lsr (n2w (a::nat)) n = n2w (MODw a div 2 ^ n)"
by (import word32 LSR_EVAL)
lemma LSR_THM: "ALL (x::nat) n::nat. word_lsr (n2w n) x = n2w (BITS HB (min WL x) n)"
@@ -1336,16 +1378,13 @@
lemma LSR_LIMIT: "ALL (x::nat) w::word32. HB < x --> word_lsr w x = w_0"
by (import word32 LSR_LIMIT)
-lemma LEFT_SHIFT_LESS: "ALL (n::nat) (m::nat) a::nat.
- a < (2::nat) ^ m -->
- (2::nat) ^ n + a * (2::nat) ^ n <= (2::nat) ^ (m + n)"
+lemma LEFT_SHIFT_LESS: "ALL (n::nat) (m::nat) a::nat. a < 2 ^ m --> 2 ^ n + a * 2 ^ n <= 2 ^ (m + n)"
by (import word32 LEFT_SHIFT_LESS)
lemma ROR_THM: "ALL (x::nat) n::nat.
word_ror (n2w n) x =
(let x'::nat = x mod WL
- in n2w (BITS HB x' n +
- BITS (x' - (1::nat)) (0::nat) n * (2::nat) ^ (WL - x')))"
+ in n2w (BITS HB x' n + BITS (x' - 1) 0 n * 2 ^ (WL - x')))"
by (import word32 ROR_THM)
lemma ROR_CYCLE: "ALL (x::nat) w::word32. word_ror w (x * WL) = w"
@@ -1354,7 +1393,7 @@
lemma ASR_THM: "ALL (x::nat) n::nat.
word_asr (n2w n) x =
(let x'::nat = min HB x; s::nat = BITS HB x' n
- in n2w (if MSBn n then (2::nat) ^ WL - (2::nat) ^ (WL - x') + s else s))"
+ in n2w (if MSBn n then 2 ^ WL - 2 ^ (WL - x') + s else s))"
by (import word32 ASR_THM)
lemma ASR_LIMIT: "ALL (x::nat) w::word32.
@@ -1366,10 +1405,9 @@
(ALL n::nat. word_lsr w_0 n = w_0) & (ALL n::nat. word_ror w_0 n = w_0)"
by (import word32 ZERO_SHIFT)
-lemma ZERO_SHIFT2: "(ALL a::word32. word_lsl a (0::nat) = a) &
-(ALL a::word32. word_asr a (0::nat) = a) &
-(ALL a::word32. word_lsr a (0::nat) = a) &
-(ALL a::word32. word_ror a (0::nat) = a)"
+lemma ZERO_SHIFT2: "(ALL a::word32. word_lsl a 0 = a) &
+(ALL a::word32. word_asr a 0 = a) &
+(ALL a::word32. word_lsr a 0 = a) & (ALL a::word32. word_ror a 0 = a)"
by (import word32 ZERO_SHIFT2)
lemma ASR_w_T: "ALL n::nat. word_asr w_T n = w_T"
@@ -1425,19 +1463,19 @@
lemma ONE_COMP_EVAL2: "ALL a::nat.
word_1comp (n2w a) =
- n2w ((2::nat) ^
+ n2w (2 ^
NUMERAL
(NUMERAL_BIT2
(NUMERAL_BIT1
(NUMERAL_BIT1 (NUMERAL_BIT1 (NUMERAL_BIT1 ALT_ZERO))))) -
- (1::nat) -
+ 1 -
MODw a)"
by (import word32 ONE_COMP_EVAL2)
lemma TWO_COMP_EVAL2: "ALL a::nat.
word_2comp (n2w a) =
n2w (MODw
- ((2::nat) ^
+ (2 ^
NUMERAL
(NUMERAL_BIT2
(NUMERAL_BIT1
@@ -1445,12 +1483,12 @@
MODw a))"
by (import word32 TWO_COMP_EVAL2)
-lemma LSR_ONE_EVAL2: "ALL a::nat. word_lsr1 (n2w a) = n2w (MODw a div (2::nat))"
+lemma LSR_ONE_EVAL2: "ALL a::nat. word_lsr1 (n2w a) = n2w (MODw a div 2)"
by (import word32 LSR_ONE_EVAL2)
lemma ASR_ONE_EVAL2: "ALL a::nat.
word_asr1 (n2w a) =
- n2w (MODw a div (2::nat) +
+ n2w (MODw a div 2 +
SBIT (MSBn a)
(NUMERAL
(NUMERAL_BIT1
@@ -1460,7 +1498,7 @@
lemma ROR_ONE_EVAL2: "ALL a::nat.
word_ror1 (n2w a) =
- n2w (MODw a div (2::nat) +
+ n2w (MODw a div 2 +
SBIT (LSBn a)
(NUMERAL
(NUMERAL_BIT1
@@ -1470,7 +1508,7 @@
lemma RRX_EVAL2: "ALL (c::bool) a::nat.
RRX c (n2w a) =
- n2w (MODw a div (2::nat) +
+ n2w (MODw a div 2 +
SBIT c
(NUMERAL
(NUMERAL_BIT1
@@ -1520,50 +1558,14 @@
(%(x::bool) y::bool. x ~= y) a b)"
by (import word32 EOR_EVAL2)
-lemma BITWISE_EVAL2: "(All::(nat => bool) => bool)
- (%n::nat.
- (All::((bool => bool => bool) => bool) => bool)
- (%oper::bool => bool => bool.
- (All::(nat => bool) => bool)
- (%x::nat.
- (All::(nat => bool) => bool)
- (%y::nat.
- (op =::nat => nat => bool)
- ((BITWISE::nat
- => (bool => bool => bool)
- => nat => nat => nat)
- n oper x y)
- ((If::bool => nat => nat => nat)
- ((op =::nat => nat => bool) n (0::nat)) (0::nat)
- ((op +::nat => nat => nat)
- ((op *::nat => nat => nat)
- ((number_of::bin => nat)
- ((op BIT::bin => bit => bin)
- ((op BIT::bin => bit => bin)
- (Numeral.Pls::bin) (bit.B1::bit))
- (bit.B0::bit)))
- ((BITWISE::nat
-=> (bool => bool => bool) => nat => nat => nat)
- ((op -::nat => nat => nat) n (1::nat)) oper
- ((op div::nat => nat => nat) x
- ((number_of::bin => nat)
- ((op BIT::bin => bit => bin)
- ((op BIT::bin => bit => bin)
- (Numeral.Pls::bin) (bit.B1::bit))
- (bit.B0::bit))))
- ((op div::nat => nat => nat) y
- ((number_of::bin => nat)
- ((op BIT::bin => bit => bin)
- ((op BIT::bin => bit => bin)
- (Numeral.Pls::bin) (bit.B1::bit))
- (bit.B0::bit))))))
- ((If::bool => nat => nat => nat)
- (oper ((ODD::nat => bool) x)
- ((ODD::nat => bool) y))
- (1::nat) (0::nat))))))))"
+lemma BITWISE_EVAL2: "ALL (n::nat) (oper::bool => bool => bool) (x::nat) y::nat.
+ BITWISE n oper x y =
+ (if n = 0 then 0
+ else 2 * BITWISE (n - 1) oper (x div 2) (y div 2) +
+ (if oper (ODD x) (ODD y) then 1 else 0))"
by (import word32 BITWISE_EVAL2)
-lemma BITSwLT_THM: "ALL (h::nat) (l::nat) n::word32. BITSw h l n < (2::nat) ^ (Suc h - l)"
+lemma BITSwLT_THM: "ALL (h::nat) (l::nat) n::word32. BITSw h l n < 2 ^ (Suc h - l)"
by (import word32 BITSwLT_THM)
lemma BITSw_COMP_THM: "ALL (h1::nat) (l1::nat) (h2::nat) (l2::nat) n::word32.
@@ -1572,29 +1574,29 @@
by (import word32 BITSw_COMP_THM)
lemma BITSw_DIV_THM: "ALL (h::nat) (l::nat) (n::nat) x::word32.
- BITSw h l x div (2::nat) ^ n = BITSw h (l + n) x"
+ BITSw h l x div 2 ^ n = BITSw h (l + n) x"
by (import word32 BITSw_DIV_THM)
-lemma BITw_THM: "ALL (b::nat) n::word32. BITw b n = (BITSw b b n = (1::nat))"
+lemma BITw_THM: "ALL (b::nat) n::word32. BITw b n = (BITSw b b n = 1)"
by (import word32 BITw_THM)
-lemma SLICEw_THM: "ALL (n::word32) (h::nat) l::nat. SLICEw h l n = BITSw h l n * (2::nat) ^ l"
+lemma SLICEw_THM: "ALL (n::word32) (h::nat) l::nat. SLICEw h l n = BITSw h l n * 2 ^ l"
by (import word32 SLICEw_THM)
lemma BITS_SLICEw_THM: "ALL (h::nat) (l::nat) n::word32. BITS h l (SLICEw h l n) = BITSw h l n"
by (import word32 BITS_SLICEw_THM)
-lemma SLICEw_ZERO_THM: "ALL (n::word32) h::nat. SLICEw h (0::nat) n = BITSw h (0::nat) n"
+lemma SLICEw_ZERO_THM: "ALL (n::word32) h::nat. SLICEw h 0 n = BITSw h 0 n"
by (import word32 SLICEw_ZERO_THM)
lemma SLICEw_COMP_THM: "ALL (h::nat) (m::nat) (l::nat) a::word32.
Suc m <= h & l <= m --> SLICEw h (Suc m) a + SLICEw m l a = SLICEw h l a"
by (import word32 SLICEw_COMP_THM)
-lemma BITSw_ZERO: "ALL (h::nat) (l::nat) n::word32. h < l --> BITSw h l n = (0::nat)"
+lemma BITSw_ZERO: "ALL (h::nat) (l::nat) n::word32. h < l --> BITSw h l n = 0"
by (import word32 BITSw_ZERO)
-lemma SLICEw_ZERO: "ALL (h::nat) (l::nat) n::word32. h < l --> SLICEw h l n = (0::nat)"
+lemma SLICEw_ZERO: "ALL (h::nat) (l::nat) n::word32. h < l --> SLICEw h l n = 0"
by (import word32 SLICEw_ZERO)
;end_setup