src/Doc/Isar-Ref/Generic.thy
changeset 56420 b266e7a86485
parent 55152 a56099a6447a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Doc/Isar-Ref/Generic.thy	Sat Apr 05 11:37:00 2014 +0200
@@ -0,0 +1,2016 @@
+theory Generic
+imports Base Main
+begin
+
+chapter {* Generic tools and packages \label{ch:gen-tools} *}
+
+section {* Configuration options \label{sec:config} *}
+
+text {* Isabelle/Pure maintains a record of named configuration
+  options within the theory or proof context, with values of type
+  @{ML_type bool}, @{ML_type int}, @{ML_type real}, or @{ML_type
+  string}.  Tools may declare options in ML, and then refer to these
+  values (relative to the context).  Thus global reference variables
+  are easily avoided.  The user may change the value of a
+  configuration option by means of an associated attribute of the same
+  name.  This form of context declaration works particularly well with
+  commands such as @{command "declare"} or @{command "using"} like
+  this:
+*}
+
+declare [[show_main_goal = false]]
+
+notepad
+begin
+  note [[show_main_goal = true]]
+end
+
+text {* For historical reasons, some tools cannot take the full proof
+  context into account and merely refer to the background theory.
+  This is accommodated by configuration options being declared as
+  ``global'', which may not be changed within a local context.
+
+  \begin{matharray}{rcll}
+    @{command_def "print_options"} & : & @{text "context \<rightarrow>"} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @{syntax name} ('=' ('true' | 'false' | @{syntax int} | @{syntax float} | @{syntax name}))?
+  \<close>}
+
+  \begin{description}
+  
+  \item @{command "print_options"} prints the available configuration
+  options, with names, types, and current values.
+  
+  \item @{text "name = value"} as an attribute expression modifies the
+  named option, with the syntax of the value depending on the option's
+  type.  For @{ML_type bool} the default value is @{text true}.  Any
+  attempt to change a global option in a local context is ignored.
+
+  \end{description}
+*}
+
+
+section {* Basic proof tools *}
+
+subsection {* Miscellaneous methods and attributes \label{sec:misc-meth-att} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def unfold} & : & @{text method} \\
+    @{method_def fold} & : & @{text method} \\
+    @{method_def insert} & : & @{text method} \\[0.5ex]
+    @{method_def erule}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def drule}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def frule}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def intro} & : & @{text method} \\
+    @{method_def elim} & : & @{text method} \\
+    @{method_def succeed} & : & @{text method} \\
+    @{method_def fail} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{method fold} | @@{method unfold} | @@{method insert}) @{syntax thmrefs}
+    ;
+    (@@{method erule} | @@{method drule} | @@{method frule})
+      ('(' @{syntax nat} ')')? @{syntax thmrefs}
+    ;
+    (@@{method intro} | @@{method elim}) @{syntax thmrefs}?
+  \<close>}
+
+  \begin{description}
+  
+  \item @{method unfold}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} and @{method fold}~@{text
+  "a\<^sub>1 \<dots> a\<^sub>n"} expand (or fold back) the given definitions throughout
+  all goals; any chained facts provided are inserted into the goal and
+  subject to rewriting as well.
+
+  \item @{method insert}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} inserts theorems as facts
+  into all goals of the proof state.  Note that current facts
+  indicated for forward chaining are ignored.
+
+  \item @{method erule}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}, @{method
+  drule}~@{text "a\<^sub>1 \<dots> a\<^sub>n"}, and @{method frule}~@{text
+  "a\<^sub>1 \<dots> a\<^sub>n"} are similar to the basic @{method rule}
+  method (see \secref{sec:pure-meth-att}), but apply rules by
+  elim-resolution, destruct-resolution, and forward-resolution,
+  respectively \cite{isabelle-implementation}.  The optional natural
+  number argument (default 0) specifies additional assumption steps to
+  be performed here.
+
+  Note that these methods are improper ones, mainly serving for
+  experimentation and tactic script emulation.  Different modes of
+  basic rule application are usually expressed in Isar at the proof
+  language level, rather than via implicit proof state manipulations.
+  For example, a proper single-step elimination would be done using
+  the plain @{method rule} method, with forward chaining of current
+  facts.
+
+  \item @{method intro} and @{method elim} repeatedly refine some goal
+  by intro- or elim-resolution, after having inserted any chained
+  facts.  Exactly the rules given as arguments are taken into account;
+  this allows fine-tuned decomposition of a proof problem, in contrast
+  to common automated tools.
+
+  \item @{method succeed} yields a single (unchanged) result; it is
+  the identity of the ``@{text ","}'' method combinator (cf.\
+  \secref{sec:proof-meth}).
+
+  \item @{method fail} yields an empty result sequence; it is the
+  identity of the ``@{text "|"}'' method combinator (cf.\
+  \secref{sec:proof-meth}).
+
+  \end{description}
+
+  \begin{matharray}{rcl}
+    @{attribute_def tagged} & : & @{text attribute} \\
+    @{attribute_def untagged} & : & @{text attribute} \\[0.5ex]
+    @{attribute_def THEN} & : & @{text attribute} \\
+    @{attribute_def unfolded} & : & @{text attribute} \\
+    @{attribute_def folded} & : & @{text attribute} \\
+    @{attribute_def abs_def} & : & @{text attribute} \\[0.5ex]
+    @{attribute_def rotated} & : & @{text attribute} \\
+    @{attribute_def (Pure) elim_format} & : & @{text attribute} \\
+    @{attribute_def no_vars}@{text "\<^sup>*"} & : & @{text attribute} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{attribute tagged} @{syntax name} @{syntax name}
+    ;
+    @@{attribute untagged} @{syntax name}
+    ;
+    @@{attribute THEN} ('[' @{syntax nat} ']')? @{syntax thmref}
+    ;
+    (@@{attribute unfolded} | @@{attribute folded}) @{syntax thmrefs}
+    ;
+    @@{attribute rotated} @{syntax int}?
+  \<close>}
+
+  \begin{description}
+
+  \item @{attribute tagged}~@{text "name value"} and @{attribute
+  untagged}~@{text name} add and remove \emph{tags} of some theorem.
+  Tags may be any list of string pairs that serve as formal comment.
+  The first string is considered the tag name, the second its value.
+  Note that @{attribute untagged} removes any tags of the same name.
+
+  \item @{attribute THEN}~@{text a} composes rules by resolution; it
+  resolves with the first premise of @{text a} (an alternative
+  position may be also specified).  See also @{ML_op "RS"} in
+  \cite{isabelle-implementation}.
+  
+  \item @{attribute unfolded}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} and @{attribute
+  folded}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} expand and fold back again the given
+  definitions throughout a rule.
+
+  \item @{attribute abs_def} turns an equation of the form @{prop "f x
+  y \<equiv> t"} into @{prop "f \<equiv> \<lambda>x y. t"}, which ensures that @{method
+  simp} or @{method unfold} steps always expand it.  This also works
+  for object-logic equality.
+
+  \item @{attribute rotated}~@{text n} rotate the premises of a
+  theorem by @{text n} (default 1).
+
+  \item @{attribute (Pure) elim_format} turns a destruction rule into
+  elimination rule format, by resolving with the rule @{prop "PROP A \<Longrightarrow>
+  (PROP A \<Longrightarrow> PROP B) \<Longrightarrow> PROP B"}.
+  
+  Note that the Classical Reasoner (\secref{sec:classical}) provides
+  its own version of this operation.
+
+  \item @{attribute no_vars} replaces schematic variables by free
+  ones; this is mainly for tuning output of pretty printed theorems.
+
+  \end{description}
+*}
+
+
+subsection {* Low-level equational reasoning *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def subst} & : & @{text method} \\
+    @{method_def hypsubst} & : & @{text method} \\
+    @{method_def split} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{method subst} ('(' 'asm' ')')? \<newline> ('(' (@{syntax nat}+) ')')? @{syntax thmref}
+    ;
+    @@{method split} @{syntax thmrefs}
+  \<close>}
+
+  These methods provide low-level facilities for equational reasoning
+  that are intended for specialized applications only.  Normally,
+  single step calculations would be performed in a structured text
+  (see also \secref{sec:calculation}), while the Simplifier methods
+  provide the canonical way for automated normalization (see
+  \secref{sec:simplifier}).
+
+  \begin{description}
+
+  \item @{method subst}~@{text eq} performs a single substitution step
+  using rule @{text eq}, which may be either a meta or object
+  equality.
+
+  \item @{method subst}~@{text "(asm) eq"} substitutes in an
+  assumption.
+
+  \item @{method subst}~@{text "(i \<dots> j) eq"} performs several
+  substitutions in the conclusion. The numbers @{text i} to @{text j}
+  indicate the positions to substitute at.  Positions are ordered from
+  the top of the term tree moving down from left to right. For
+  example, in @{text "(a + b) + (c + d)"} there are three positions
+  where commutativity of @{text "+"} is applicable: 1 refers to @{text
+  "a + b"}, 2 to the whole term, and 3 to @{text "c + d"}.
+
+  If the positions in the list @{text "(i \<dots> j)"} are non-overlapping
+  (e.g.\ @{text "(2 3)"} in @{text "(a + b) + (c + d)"}) you may
+  assume all substitutions are performed simultaneously.  Otherwise
+  the behaviour of @{text subst} is not specified.
+
+  \item @{method subst}~@{text "(asm) (i \<dots> j) eq"} performs the
+  substitutions in the assumptions. The positions refer to the
+  assumptions in order from left to right.  For example, given in a
+  goal of the form @{text "P (a + b) \<Longrightarrow> P (c + d) \<Longrightarrow> \<dots>"}, position 1 of
+  commutativity of @{text "+"} is the subterm @{text "a + b"} and
+  position 2 is the subterm @{text "c + d"}.
+
+  \item @{method hypsubst} performs substitution using some
+  assumption; this only works for equations of the form @{text "x =
+  t"} where @{text x} is a free or bound variable.
+
+  \item @{method split}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} performs single-step case
+  splitting using the given rules.  Splitting is performed in the
+  conclusion or some assumption of the subgoal, depending of the
+  structure of the rule.
+  
+  Note that the @{method simp} method already involves repeated
+  application of split rules as declared in the current context, using
+  @{attribute split}, for example.
+
+  \end{description}
+*}
+
+
+subsection {* Further tactic emulations \label{sec:tactics} *}
+
+text {*
+  The following improper proof methods emulate traditional tactics.
+  These admit direct access to the goal state, which is normally
+  considered harmful!  In particular, this may involve both numbered
+  goal addressing (default 1), and dynamic instantiation within the
+  scope of some subgoal.
+
+  \begin{warn}
+    Dynamic instantiations refer to universally quantified parameters
+    of a subgoal (the dynamic context) rather than fixed variables and
+    term abbreviations of a (static) Isar context.
+  \end{warn}
+
+  Tactic emulation methods, unlike their ML counterparts, admit
+  simultaneous instantiation from both dynamic and static contexts.
+  If names occur in both contexts goal parameters hide locally fixed
+  variables.  Likewise, schematic variables refer to term
+  abbreviations, if present in the static context.  Otherwise the
+  schematic variable is interpreted as a schematic variable and left
+  to be solved by unification with certain parts of the subgoal.
+
+  Note that the tactic emulation proof methods in Isabelle/Isar are
+  consistently named @{text foo_tac}.  Note also that variable names
+  occurring on left hand sides of instantiations must be preceded by a
+  question mark if they coincide with a keyword or contain dots.  This
+  is consistent with the attribute @{attribute "where"} (see
+  \secref{sec:pure-meth-att}).
+
+  \begin{matharray}{rcl}
+    @{method_def rule_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def erule_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def drule_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def frule_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def cut_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def thin_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def subgoal_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def rename_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def rotate_tac}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def tactic}@{text "\<^sup>*"} & : & @{text method} \\
+    @{method_def raw_tactic}@{text "\<^sup>*"} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{method rule_tac} | @@{method erule_tac} | @@{method drule_tac} |
+      @@{method frule_tac} | @@{method cut_tac} | @@{method thin_tac}) @{syntax goal_spec}? \<newline>
+    ( dynamic_insts @'in' @{syntax thmref} | @{syntax thmrefs} )
+    ;
+    @@{method subgoal_tac} @{syntax goal_spec}? (@{syntax prop} +)
+    ;
+    @@{method rename_tac} @{syntax goal_spec}? (@{syntax name} +)
+    ;
+    @@{method rotate_tac} @{syntax goal_spec}? @{syntax int}?
+    ;
+    (@@{method tactic} | @@{method raw_tactic}) @{syntax text}
+    ;
+
+    dynamic_insts: ((@{syntax name} '=' @{syntax term}) + @'and')
+  \<close>}
+
+\begin{description}
+
+  \item @{method rule_tac} etc. do resolution of rules with explicit
+  instantiation.  This works the same way as the ML tactics @{ML
+  res_inst_tac} etc. (see \cite{isabelle-implementation})
+
+  Multiple rules may be only given if there is no instantiation; then
+  @{method rule_tac} is the same as @{ML resolve_tac} in ML (see
+  \cite{isabelle-implementation}).
+
+  \item @{method cut_tac} inserts facts into the proof state as
+  assumption of a subgoal; instantiations may be given as well.  Note
+  that the scope of schematic variables is spread over the main goal
+  statement and rule premises are turned into new subgoals.  This is
+  in contrast to the regular method @{method insert} which inserts
+  closed rule statements.
+
+  \item @{method thin_tac}~@{text \<phi>} deletes the specified premise
+  from a subgoal.  Note that @{text \<phi>} may contain schematic
+  variables, to abbreviate the intended proposition; the first
+  matching subgoal premise will be deleted.  Removing useless premises
+  from a subgoal increases its readability and can make search tactics
+  run faster.
+
+  \item @{method subgoal_tac}~@{text "\<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"} adds the propositions
+  @{text "\<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"} as local premises to a subgoal, and poses the same
+  as new subgoals (in the original context).
+
+  \item @{method rename_tac}~@{text "x\<^sub>1 \<dots> x\<^sub>n"} renames parameters of a
+  goal according to the list @{text "x\<^sub>1, \<dots>, x\<^sub>n"}, which refers to the
+  \emph{suffix} of variables.
+
+  \item @{method rotate_tac}~@{text n} rotates the premises of a
+  subgoal by @{text n} positions: from right to left if @{text n} is
+  positive, and from left to right if @{text n} is negative; the
+  default value is 1.
+
+  \item @{method tactic}~@{text "text"} produces a proof method from
+  any ML text of type @{ML_type tactic}.  Apart from the usual ML
+  environment and the current proof context, the ML code may refer to
+  the locally bound values @{ML_text facts}, which indicates any
+  current facts used for forward-chaining.
+
+  \item @{method raw_tactic} is similar to @{method tactic}, but
+  presents the goal state in its raw internal form, where simultaneous
+  subgoals appear as conjunction of the logical framework instead of
+  the usual split into several subgoals.  While feature this is useful
+  for debugging of complex method definitions, it should not never
+  appear in production theories.
+
+  \end{description}
+*}
+
+
+section {* The Simplifier \label{sec:simplifier} *}
+
+text {* The Simplifier performs conditional and unconditional
+  rewriting and uses contextual information: rule declarations in the
+  background theory or local proof context are taken into account, as
+  well as chained facts and subgoal premises (``local assumptions'').
+  There are several general hooks that allow to modify the
+  simplification strategy, or incorporate other proof tools that solve
+  sub-problems, produce rewrite rules on demand etc.
+
+  The rewriting strategy is always strictly bottom up, except for
+  congruence rules, which are applied while descending into a term.
+  Conditions in conditional rewrite rules are solved recursively
+  before the rewrite rule is applied.
+
+  The default Simplifier setup of major object logics (HOL, HOLCF,
+  FOL, ZF) makes the Simplifier ready for immediate use, without
+  engaging into the internal structures.  Thus it serves as
+  general-purpose proof tool with the main focus on equational
+  reasoning, and a bit more than that.
+*}
+
+
+subsection {* Simplification methods \label{sec:simp-meth} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def simp} & : & @{text method} \\
+    @{method_def simp_all} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{method simp} | @@{method simp_all}) opt? (@{syntax simpmod} * )
+    ;
+
+    opt: '(' ('no_asm' | 'no_asm_simp' | 'no_asm_use' | 'asm_lr' ) ')'
+    ;
+    @{syntax_def simpmod}: ('add' | 'del' | 'only' | 'split' (() | 'add' | 'del') |
+      'cong' (() | 'add' | 'del')) ':' @{syntax thmrefs}
+  \<close>}
+
+  \begin{description}
+
+  \item @{method simp} invokes the Simplifier on the first subgoal,
+  after inserting chained facts as additional goal premises; further
+  rule declarations may be included via @{text "(simp add: facts)"}.
+  The proof method fails if the subgoal remains unchanged after
+  simplification.
+
+  Note that the original goal premises and chained facts are subject
+  to simplification themselves, while declarations via @{text
+  "add"}/@{text "del"} merely follow the policies of the object-logic
+  to extract rewrite rules from theorems, without further
+  simplification.  This may lead to slightly different behavior in
+  either case, which might be required precisely like that in some
+  boundary situations to perform the intended simplification step!
+
+  \medskip The @{text only} modifier first removes all other rewrite
+  rules, looper tactics (including split rules), congruence rules, and
+  then behaves like @{text add}.  Implicit solvers remain, which means
+  that trivial rules like reflexivity or introduction of @{text
+  "True"} are available to solve the simplified subgoals, but also
+  non-trivial tools like linear arithmetic in HOL.  The latter may
+  lead to some surprise of the meaning of ``only'' in Isabelle/HOL
+  compared to English!
+
+  \medskip The @{text split} modifiers add or delete rules for the
+  Splitter (see also \secref{sec:simp-strategies} on the looper).
+  This works only if the Simplifier method has been properly setup to
+  include the Splitter (all major object logics such HOL, HOLCF, FOL,
+  ZF do this already).
+
+  There is also a separate @{method_ref split} method available for
+  single-step case splitting.  The effect of repeatedly applying
+  @{text "(split thms)"} can be imitated by ``@{text "(simp only:
+  split: thms)"}''.
+
+  \medskip The @{text cong} modifiers add or delete Simplifier
+  congruence rules (see also \secref{sec:simp-rules}); the default is
+  to add.
+
+  \item @{method simp_all} is similar to @{method simp}, but acts on
+  all goals, working backwards from the last to the first one as usual
+  in Isabelle.\footnote{The order is irrelevant for goals without
+  schematic variables, so simplification might actually be performed
+  in parallel here.}
+
+  Chained facts are inserted into all subgoals, before the
+  simplification process starts.  Further rule declarations are the
+  same as for @{method simp}.
+
+  The proof method fails if all subgoals remain unchanged after
+  simplification.
+
+  \end{description}
+
+  By default the Simplifier methods above take local assumptions fully
+  into account, using equational assumptions in the subsequent
+  normalization process, or simplifying assumptions themselves.
+  Further options allow to fine-tune the behavior of the Simplifier
+  in this respect, corresponding to a variety of ML tactics as
+  follows.\footnote{Unlike the corresponding Isar proof methods, the
+  ML tactics do not insist in changing the goal state.}
+
+  \begin{center}
+  \small
+  \begin{supertabular}{|l|l|p{0.3\textwidth}|}
+  \hline
+  Isar method & ML tactic & behavior \\\hline
+
+  @{text "(simp (no_asm))"} & @{ML simp_tac} & assumptions are ignored
+  completely \\\hline
+
+  @{text "(simp (no_asm_simp))"} & @{ML asm_simp_tac} & assumptions
+  are used in the simplification of the conclusion but are not
+  themselves simplified \\\hline
+
+  @{text "(simp (no_asm_use))"} & @{ML full_simp_tac} & assumptions
+  are simplified but are not used in the simplification of each other
+  or the conclusion \\\hline
+
+  @{text "(simp)"} & @{ML asm_full_simp_tac} & assumptions are used in
+  the simplification of the conclusion and to simplify other
+  assumptions \\\hline
+
+  @{text "(simp (asm_lr))"} & @{ML asm_lr_simp_tac} & compatibility
+  mode: an assumption is only used for simplifying assumptions which
+  are to the right of it \\\hline
+
+  \end{supertabular}
+  \end{center}
+*}
+
+
+subsubsection {* Examples *}
+
+text {* We consider basic algebraic simplifications in Isabelle/HOL.
+  The rather trivial goal @{prop "0 + (x + 0) = x + 0 + 0"} looks like
+  a good candidate to be solved by a single call of @{method simp}:
+*}
+
+lemma "0 + (x + 0) = x + 0 + 0" apply simp? oops
+
+text {* The above attempt \emph{fails}, because @{term "0"} and @{term
+  "op +"} in the HOL library are declared as generic type class
+  operations, without stating any algebraic laws yet.  More specific
+  types are required to get access to certain standard simplifications
+  of the theory context, e.g.\ like this: *}
+
+lemma fixes x :: nat shows "0 + (x + 0) = x + 0 + 0" by simp
+lemma fixes x :: int shows "0 + (x + 0) = x + 0 + 0" by simp
+lemma fixes x :: "'a :: monoid_add" shows "0 + (x + 0) = x + 0 + 0" by simp
+
+text {*
+  \medskip In many cases, assumptions of a subgoal are also needed in
+  the simplification process.  For example:
+*}
+
+lemma fixes x :: nat shows "x = 0 \<Longrightarrow> x + x = 0" by simp
+lemma fixes x :: nat assumes "x = 0" shows "x + x = 0" apply simp oops
+lemma fixes x :: nat assumes "x = 0" shows "x + x = 0" using assms by simp
+
+text {* As seen above, local assumptions that shall contribute to
+  simplification need to be part of the subgoal already, or indicated
+  explicitly for use by the subsequent method invocation.  Both too
+  little or too much information can make simplification fail, for
+  different reasons.
+
+  In the next example the malicious assumption @{prop "\<And>x::nat. f x =
+  g (f (g x))"} does not contribute to solve the problem, but makes
+  the default @{method simp} method loop: the rewrite rule @{text "f
+  ?x \<equiv> g (f (g ?x))"} extracted from the assumption does not
+  terminate.  The Simplifier notices certain simple forms of
+  nontermination, but not this one.  The problem can be solved
+  nonetheless, by ignoring assumptions via special options as
+  explained before:
+*}
+
+lemma "(\<And>x::nat. f x = g (f (g x))) \<Longrightarrow> f 0 = f 0 + 0"
+  by (simp (no_asm))
+
+text {* The latter form is typical for long unstructured proof
+  scripts, where the control over the goal content is limited.  In
+  structured proofs it is usually better to avoid pushing too many
+  facts into the goal state in the first place.  Assumptions in the
+  Isar proof context do not intrude the reasoning if not used
+  explicitly.  This is illustrated for a toplevel statement and a
+  local proof body as follows:
+*}
+
+lemma
+  assumes "\<And>x::nat. f x = g (f (g x))"
+  shows "f 0 = f 0 + 0" by simp
+
+notepad
+begin
+  assume "\<And>x::nat. f x = g (f (g x))"
+  have "f 0 = f 0 + 0" by simp
+end
+
+text {* \medskip Because assumptions may simplify each other, there
+  can be very subtle cases of nontermination. For example, the regular
+  @{method simp} method applied to @{prop "P (f x) \<Longrightarrow> y = x \<Longrightarrow> f x = f y
+  \<Longrightarrow> Q"} gives rise to the infinite reduction sequence
+  \[
+  @{text "P (f x)"} \stackrel{@{text "f x \<equiv> f y"}}{\longmapsto}
+  @{text "P (f y)"} \stackrel{@{text "y \<equiv> x"}}{\longmapsto}
+  @{text "P (f x)"} \stackrel{@{text "f x \<equiv> f y"}}{\longmapsto} \cdots
+  \]
+  whereas applying the same to @{prop "y = x \<Longrightarrow> f x = f y \<Longrightarrow> P (f x) \<Longrightarrow>
+  Q"} terminates (without solving the goal):
+*}
+
+lemma "y = x \<Longrightarrow> f x = f y \<Longrightarrow> P (f x) \<Longrightarrow> Q"
+  apply simp
+  oops
+
+text {* See also \secref{sec:simp-config} for options to enable
+  Simplifier trace mode, which often helps to diagnose problems with
+  rewrite systems.
+*}
+
+
+subsection {* Declaring rules \label{sec:simp-rules} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{attribute_def simp} & : & @{text attribute} \\
+    @{attribute_def split} & : & @{text attribute} \\
+    @{attribute_def cong} & : & @{text attribute} \\
+    @{command_def "print_simpset"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{attribute simp} | @@{attribute split} | @@{attribute cong})
+      (() | 'add' | 'del')
+  \<close>}
+
+  \begin{description}
+
+  \item @{attribute simp} declares rewrite rules, by adding or
+  deleting them from the simpset within the theory or proof context.
+  Rewrite rules are theorems expressing some form of equality, for
+  example:
+
+  @{text "Suc ?m + ?n = ?m + Suc ?n"} \\
+  @{text "?P \<and> ?P \<longleftrightarrow> ?P"} \\
+  @{text "?A \<union> ?B \<equiv> {x. x \<in> ?A \<or> x \<in> ?B}"}
+
+  \smallskip
+  Conditional rewrites such as @{text "?m < ?n \<Longrightarrow> ?m div ?n = 0"} are
+  also permitted; the conditions can be arbitrary formulas.
+
+  \medskip Internally, all rewrite rules are translated into Pure
+  equalities, theorems with conclusion @{text "lhs \<equiv> rhs"}. The
+  simpset contains a function for extracting equalities from arbitrary
+  theorems, which is usually installed when the object-logic is
+  configured initially. For example, @{text "\<not> ?x \<in> {}"} could be
+  turned into @{text "?x \<in> {} \<equiv> False"}. Theorems that are declared as
+  @{attribute simp} and local assumptions within a goal are treated
+  uniformly in this respect.
+
+  The Simplifier accepts the following formats for the @{text "lhs"}
+  term:
+
+  \begin{enumerate}
+
+  \item First-order patterns, considering the sublanguage of
+  application of constant operators to variable operands, without
+  @{text "\<lambda>"}-abstractions or functional variables.
+  For example:
+
+  @{text "(?x + ?y) + ?z \<equiv> ?x + (?y + ?z)"} \\
+  @{text "f (f ?x ?y) ?z \<equiv> f ?x (f ?y ?z)"}
+
+  \item Higher-order patterns in the sense of \cite{nipkow-patterns}.
+  These are terms in @{text "\<beta>"}-normal form (this will always be the
+  case unless you have done something strange) where each occurrence
+  of an unknown is of the form @{text "?F x\<^sub>1 \<dots> x\<^sub>n"}, where the
+  @{text "x\<^sub>i"} are distinct bound variables.
+
+  For example, @{text "(\<forall>x. ?P x \<and> ?Q x) \<equiv> (\<forall>x. ?P x) \<and> (\<forall>x. ?Q x)"}
+  or its symmetric form, since the @{text "rhs"} is also a
+  higher-order pattern.
+
+  \item Physical first-order patterns over raw @{text "\<lambda>"}-term
+  structure without @{text "\<alpha>\<beta>\<eta>"}-equality; abstractions and bound
+  variables are treated like quasi-constant term material.
+
+  For example, the rule @{text "?f ?x \<in> range ?f = True"} rewrites the
+  term @{text "g a \<in> range g"} to @{text "True"}, but will fail to
+  match @{text "g (h b) \<in> range (\<lambda>x. g (h x))"}. However, offending
+  subterms (in our case @{text "?f ?x"}, which is not a pattern) can
+  be replaced by adding new variables and conditions like this: @{text
+  "?y = ?f ?x \<Longrightarrow> ?y \<in> range ?f = True"} is acceptable as a conditional
+  rewrite rule of the second category since conditions can be
+  arbitrary terms.
+
+  \end{enumerate}
+
+  \item @{attribute split} declares case split rules.
+
+  \item @{attribute cong} declares congruence rules to the Simplifier
+  context.
+
+  Congruence rules are equalities of the form @{text [display]
+  "\<dots> \<Longrightarrow> f ?x\<^sub>1 \<dots> ?x\<^sub>n = f ?y\<^sub>1 \<dots> ?y\<^sub>n"}
+
+  This controls the simplification of the arguments of @{text f}.  For
+  example, some arguments can be simplified under additional
+  assumptions: @{text [display] "?P\<^sub>1 \<longleftrightarrow> ?Q\<^sub>1 \<Longrightarrow> (?Q\<^sub>1 \<Longrightarrow> ?P\<^sub>2 \<longleftrightarrow> ?Q\<^sub>2) \<Longrightarrow>
+  (?P\<^sub>1 \<longrightarrow> ?P\<^sub>2) \<longleftrightarrow> (?Q\<^sub>1 \<longrightarrow> ?Q\<^sub>2)"}
+
+  Given this rule, the simplifier assumes @{text "?Q\<^sub>1"} and extracts
+  rewrite rules from it when simplifying @{text "?P\<^sub>2"}.  Such local
+  assumptions are effective for rewriting formulae such as @{text "x =
+  0 \<longrightarrow> y + x = y"}.
+
+  %FIXME
+  %The local assumptions are also provided as theorems to the solver;
+  %see \secref{sec:simp-solver} below.
+
+  \medskip The following congruence rule for bounded quantifiers also
+  supplies contextual information --- about the bound variable:
+  @{text [display] "(?A = ?B) \<Longrightarrow> (\<And>x. x \<in> ?B \<Longrightarrow> ?P x \<longleftrightarrow> ?Q x) \<Longrightarrow>
+    (\<forall>x \<in> ?A. ?P x) \<longleftrightarrow> (\<forall>x \<in> ?B. ?Q x)"}
+
+  \medskip This congruence rule for conditional expressions can
+  supply contextual information for simplifying the arms:
+  @{text [display] "?p = ?q \<Longrightarrow> (?q \<Longrightarrow> ?a = ?c) \<Longrightarrow> (\<not> ?q \<Longrightarrow> ?b = ?d) \<Longrightarrow>
+    (if ?p then ?a else ?b) = (if ?q then ?c else ?d)"}
+
+  A congruence rule can also \emph{prevent} simplification of some
+  arguments.  Here is an alternative congruence rule for conditional
+  expressions that conforms to non-strict functional evaluation:
+  @{text [display] "?p = ?q \<Longrightarrow> (if ?p then ?a else ?b) = (if ?q then ?a else ?b)"}
+
+  Only the first argument is simplified; the others remain unchanged.
+  This can make simplification much faster, but may require an extra
+  case split over the condition @{text "?q"} to prove the goal.
+
+  \item @{command "print_simpset"} prints the collection of rules
+  declared to the Simplifier, which is also known as ``simpset''
+  internally.
+
+  For historical reasons, simpsets may occur independently from the
+  current context, but are conceptually dependent on it.  When the
+  Simplifier is invoked via one of its main entry points in the Isar
+  source language (as proof method \secref{sec:simp-meth} or rule
+  attribute \secref{sec:simp-meth}), its simpset is derived from the
+  current proof context, and carries a back-reference to that for
+  other tools that might get invoked internally (e.g.\ simplification
+  procedures \secref{sec:simproc}).  A mismatch of the context of the
+  simpset and the context of the problem being simplified may lead to
+  unexpected results.
+
+  \end{description}
+
+  The implicit simpset of the theory context is propagated
+  monotonically through the theory hierarchy: forming a new theory,
+  the union of the simpsets of its imports are taken as starting
+  point.  Also note that definitional packages like @{command
+  "datatype"}, @{command "primrec"}, @{command "fun"} routinely
+  declare Simplifier rules to the target context, while plain
+  @{command "definition"} is an exception in \emph{not} declaring
+  anything.
+
+  \medskip It is up the user to manipulate the current simpset further
+  by explicitly adding or deleting theorems as simplification rules,
+  or installing other tools via simplification procedures
+  (\secref{sec:simproc}).  Good simpsets are hard to design.  Rules
+  that obviously simplify, like @{text "?n + 0 \<equiv> ?n"} are good
+  candidates for the implicit simpset, unless a special
+  non-normalizing behavior of certain operations is intended.  More
+  specific rules (such as distributive laws, which duplicate subterms)
+  should be added only for specific proof steps.  Conversely,
+  sometimes a rule needs to be deleted just for some part of a proof.
+  The need of frequent additions or deletions may indicate a poorly
+  designed simpset.
+
+  \begin{warn}
+  The union of simpsets from theory imports (as described above) is
+  not always a good starting point for the new theory.  If some
+  ancestors have deleted simplification rules because they are no
+  longer wanted, while others have left those rules in, then the union
+  will contain the unwanted rules, and thus have to be deleted again
+  in the theory body.
+  \end{warn}
+*}
+
+
+subsection {* Ordered rewriting with permutative rules *}
+
+text {* A rewrite rule is \emph{permutative} if the left-hand side and
+  right-hand side are the equal up to renaming of variables.  The most
+  common permutative rule is commutativity: @{text "?x + ?y = ?y +
+  ?x"}.  Other examples include @{text "(?x - ?y) - ?z = (?x - ?z) -
+  ?y"} in arithmetic and @{text "insert ?x (insert ?y ?A) = insert ?y
+  (insert ?x ?A)"} for sets.  Such rules are common enough to merit
+  special attention.
+
+  Because ordinary rewriting loops given such rules, the Simplifier
+  employs a special strategy, called \emph{ordered rewriting}.
+  Permutative rules are detected and only applied if the rewriting
+  step decreases the redex wrt.\ a given term ordering.  For example,
+  commutativity rewrites @{text "b + a"} to @{text "a + b"}, but then
+  stops, because the redex cannot be decreased further in the sense of
+  the term ordering.
+
+  The default is lexicographic ordering of term structure, but this
+  could be also changed locally for special applications via
+  @{index_ML Simplifier.set_termless} in Isabelle/ML.
+
+  \medskip Permutative rewrite rules are declared to the Simplifier
+  just like other rewrite rules.  Their special status is recognized
+  automatically, and their application is guarded by the term ordering
+  accordingly. *}
+
+
+subsubsection {* Rewriting with AC operators *}
+
+text {* Ordered rewriting is particularly effective in the case of
+  associative-commutative operators.  (Associativity by itself is not
+  permutative.)  When dealing with an AC-operator @{text "f"}, keep
+  the following points in mind:
+
+  \begin{itemize}
+
+  \item The associative law must always be oriented from left to
+  right, namely @{text "f (f x y) z = f x (f y z)"}.  The opposite
+  orientation, if used with commutativity, leads to looping in
+  conjunction with the standard term order.
+
+  \item To complete your set of rewrite rules, you must add not just
+  associativity (A) and commutativity (C) but also a derived rule
+  \emph{left-commutativity} (LC): @{text "f x (f y z) = f y (f x z)"}.
+
+  \end{itemize}
+
+  Ordered rewriting with the combination of A, C, and LC sorts a term
+  lexicographically --- the rewriting engine imitates bubble-sort.
+*}
+
+locale AC_example =
+  fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infix "\<bullet>" 60)
+  assumes assoc: "(x \<bullet> y) \<bullet> z = x \<bullet> (y \<bullet> z)"
+  assumes commute: "x \<bullet> y = y \<bullet> x"
+begin
+
+lemma left_commute: "x \<bullet> (y \<bullet> z) = y \<bullet> (x \<bullet> z)"
+proof -
+  have "(x \<bullet> y) \<bullet> z = (y \<bullet> x) \<bullet> z" by (simp only: commute)
+  then show ?thesis by (simp only: assoc)
+qed
+
+lemmas AC_rules = assoc commute left_commute
+
+text {* Thus the Simplifier is able to establish equalities with
+  arbitrary permutations of subterms, by normalizing to a common
+  standard form.  For example: *}
+
+lemma "(b \<bullet> c) \<bullet> a = xxx"
+  apply (simp only: AC_rules)
+  txt {* @{subgoals} *}
+  oops
+
+lemma "(b \<bullet> c) \<bullet> a = a \<bullet> (b \<bullet> c)" by (simp only: AC_rules)
+lemma "(b \<bullet> c) \<bullet> a = c \<bullet> (b \<bullet> a)" by (simp only: AC_rules)
+lemma "(b \<bullet> c) \<bullet> a = (c \<bullet> b) \<bullet> a" by (simp only: AC_rules)
+
+end
+
+text {* Martin and Nipkow \cite{martin-nipkow} discuss the theory and
+  give many examples; other algebraic structures are amenable to
+  ordered rewriting, such as boolean rings.  The Boyer-Moore theorem
+  prover \cite{bm88book} also employs ordered rewriting.
+*}
+
+
+subsubsection {* Re-orienting equalities *}
+
+text {* Another application of ordered rewriting uses the derived rule
+  @{thm [source] eq_commute}: @{thm [source = false] eq_commute} to
+  reverse equations.
+
+  This is occasionally useful to re-orient local assumptions according
+  to the term ordering, when other built-in mechanisms of
+  reorientation and mutual simplification fail to apply.  *}
+
+
+subsection {* Configuration options \label{sec:simp-config} *}
+
+text {*
+  \begin{tabular}{rcll}
+    @{attribute_def simp_depth_limit} & : & @{text attribute} & default @{text 100} \\
+    @{attribute_def simp_trace} & : & @{text attribute} & default @{text false} \\
+    @{attribute_def simp_trace_depth_limit} & : & @{text attribute} & default @{text 1} \\
+    @{attribute_def simp_debug} & : & @{text attribute} & default @{text false} \\
+  \end{tabular}
+  \medskip
+
+  These configurations options control further aspects of the Simplifier.
+  See also \secref{sec:config}.
+
+  \begin{description}
+
+  \item @{attribute simp_depth_limit} limits the number of recursive
+  invocations of the Simplifier during conditional rewriting.
+
+  \item @{attribute simp_trace} makes the Simplifier output internal
+  operations.  This includes rewrite steps, but also bookkeeping like
+  modifications of the simpset.
+
+  \item @{attribute simp_trace_depth_limit} limits the effect of
+  @{attribute simp_trace} to the given depth of recursive Simplifier
+  invocations (when solving conditions of rewrite rules).
+
+  \item @{attribute simp_debug} makes the Simplifier output some extra
+  information about internal operations.  This includes any attempted
+  invocation of simplification procedures.
+
+  \end{description}
+*}
+
+
+subsection {* Simplification procedures \label{sec:simproc} *}
+
+text {* Simplification procedures are ML functions that produce proven
+  rewrite rules on demand.  They are associated with higher-order
+  patterns that approximate the left-hand sides of equations.  The
+  Simplifier first matches the current redex against one of the LHS
+  patterns; if this succeeds, the corresponding ML function is
+  invoked, passing the Simplifier context and redex term.  Thus rules
+  may be specifically fashioned for particular situations, resulting
+  in a more powerful mechanism than term rewriting by a fixed set of
+  rules.
+
+  Any successful result needs to be a (possibly conditional) rewrite
+  rule @{text "t \<equiv> u"} that is applicable to the current redex.  The
+  rule will be applied just as any ordinary rewrite rule.  It is
+  expected to be already in \emph{internal form}, bypassing the
+  automatic preprocessing of object-level equivalences.
+
+  \begin{matharray}{rcl}
+    @{command_def "simproc_setup"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
+    simproc & : & @{text attribute} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{command simproc_setup} @{syntax name} '(' (@{syntax term} + '|') ')' '='
+      @{syntax text} \<newline> (@'identifier' (@{syntax nameref}+))?
+    ;
+
+    @@{attribute simproc} (('add' ':')? | 'del' ':') (@{syntax name}+)
+  \<close>}
+
+  \begin{description}
+
+  \item @{command "simproc_setup"} defines a named simplification
+  procedure that is invoked by the Simplifier whenever any of the
+  given term patterns match the current redex.  The implementation,
+  which is provided as ML source text, needs to be of type @{ML_type
+  "morphism -> simpset -> cterm -> thm option"}, where the @{ML_type
+  cterm} represents the current redex @{text r} and the result is
+  supposed to be some proven rewrite rule @{text "r \<equiv> r'"} (or a
+  generalized version), or @{ML NONE} to indicate failure.  The
+  @{ML_type simpset} argument holds the full context of the current
+  Simplifier invocation, including the actual Isar proof context.  The
+  @{ML_type morphism} informs about the difference of the original
+  compilation context wrt.\ the one of the actual application later
+  on.  The optional @{keyword "identifier"} specifies theorems that
+  represent the logical content of the abstract theory of this
+  simproc.
+
+  Morphisms and identifiers are only relevant for simprocs that are
+  defined within a local target context, e.g.\ in a locale.
+
+  \item @{text "simproc add: name"} and @{text "simproc del: name"}
+  add or delete named simprocs to the current Simplifier context.  The
+  default is to add a simproc.  Note that @{command "simproc_setup"}
+  already adds the new simproc to the subsequent context.
+
+  \end{description}
+*}
+
+
+subsubsection {* Example *}
+
+text {* The following simplification procedure for @{thm
+  [source=false, show_types] unit_eq} in HOL performs fine-grained
+  control over rule application, beyond higher-order pattern matching.
+  Declaring @{thm unit_eq} as @{attribute simp} directly would make
+  the simplifier loop!  Note that a version of this simplification
+  procedure is already active in Isabelle/HOL.  *}
+
+simproc_setup unit ("x::unit") = {*
+  fn _ => fn _ => fn ct =>
+    if HOLogic.is_unit (term_of ct) then NONE
+    else SOME (mk_meta_eq @{thm unit_eq})
+*}
+
+text {* Since the Simplifier applies simplification procedures
+  frequently, it is important to make the failure check in ML
+  reasonably fast. *}
+
+
+subsection {* Configurable Simplifier strategies \label{sec:simp-strategies} *}
+
+text {* The core term-rewriting engine of the Simplifier is normally
+  used in combination with some add-on components that modify the
+  strategy and allow to integrate other non-Simplifier proof tools.
+  These may be reconfigured in ML as explained below.  Even if the
+  default strategies of object-logics like Isabelle/HOL are used
+  unchanged, it helps to understand how the standard Simplifier
+  strategies work. *}
+
+
+subsubsection {* The subgoaler *}
+
+text {*
+  \begin{mldecls}
+  @{index_ML Simplifier.set_subgoaler: "(Proof.context -> int -> tactic) ->
+  Proof.context -> Proof.context"} \\
+  @{index_ML Simplifier.prems_of: "Proof.context -> thm list"} \\
+  \end{mldecls}
+
+  The subgoaler is the tactic used to solve subgoals arising out of
+  conditional rewrite rules or congruence rules.  The default should
+  be simplification itself.  In rare situations, this strategy may
+  need to be changed.  For example, if the premise of a conditional
+  rule is an instance of its conclusion, as in @{text "Suc ?m < ?n \<Longrightarrow>
+  ?m < ?n"}, the default strategy could loop.  % FIXME !??
+
+  \begin{description}
+
+  \item @{ML Simplifier.set_subgoaler}~@{text "tac ctxt"} sets the
+  subgoaler of the context to @{text "tac"}.  The tactic will
+  be applied to the context of the running Simplifier instance.
+
+  \item @{ML Simplifier.prems_of}~@{text "ctxt"} retrieves the current
+  set of premises from the context.  This may be non-empty only if
+  the Simplifier has been told to utilize local assumptions in the
+  first place (cf.\ the options in \secref{sec:simp-meth}).
+
+  \end{description}
+
+  As an example, consider the following alternative subgoaler:
+*}
+
+ML {*
+  fun subgoaler_tac ctxt =
+    assume_tac ORELSE'
+    resolve_tac (Simplifier.prems_of ctxt) ORELSE'
+    asm_simp_tac ctxt
+*}
+
+text {* This tactic first tries to solve the subgoal by assumption or
+  by resolving with with one of the premises, calling simplification
+  only if that fails. *}
+
+
+subsubsection {* The solver *}
+
+text {*
+  \begin{mldecls}
+  @{index_ML_type solver} \\
+  @{index_ML Simplifier.mk_solver: "string ->
+  (Proof.context -> int -> tactic) -> solver"} \\
+  @{index_ML_op setSolver: "Proof.context * solver -> Proof.context"} \\
+  @{index_ML_op addSolver: "Proof.context * solver -> Proof.context"} \\
+  @{index_ML_op setSSolver: "Proof.context * solver -> Proof.context"} \\
+  @{index_ML_op addSSolver: "Proof.context * solver -> Proof.context"} \\
+  \end{mldecls}
+
+  A solver is a tactic that attempts to solve a subgoal after
+  simplification.  Its core functionality is to prove trivial subgoals
+  such as @{prop "True"} and @{text "t = t"}, but object-logics might
+  be more ambitious.  For example, Isabelle/HOL performs a restricted
+  version of linear arithmetic here.
+
+  Solvers are packaged up in abstract type @{ML_type solver}, with
+  @{ML Simplifier.mk_solver} as the only operation to create a solver.
+
+  \medskip Rewriting does not instantiate unknowns.  For example,
+  rewriting alone cannot prove @{text "a \<in> ?A"} since this requires
+  instantiating @{text "?A"}.  The solver, however, is an arbitrary
+  tactic and may instantiate unknowns as it pleases.  This is the only
+  way the Simplifier can handle a conditional rewrite rule whose
+  condition contains extra variables.  When a simplification tactic is
+  to be combined with other provers, especially with the Classical
+  Reasoner, it is important whether it can be considered safe or not.
+  For this reason a simpset contains two solvers: safe and unsafe.
+
+  The standard simplification strategy solely uses the unsafe solver,
+  which is appropriate in most cases.  For special applications where
+  the simplification process is not allowed to instantiate unknowns
+  within the goal, simplification starts with the safe solver, but may
+  still apply the ordinary unsafe one in nested simplifications for
+  conditional rules or congruences. Note that in this way the overall
+  tactic is not totally safe: it may instantiate unknowns that appear
+  also in other subgoals.
+
+  \begin{description}
+
+  \item @{ML Simplifier.mk_solver}~@{text "name tac"} turns @{text
+  "tac"} into a solver; the @{text "name"} is only attached as a
+  comment and has no further significance.
+
+  \item @{text "ctxt setSSolver solver"} installs @{text "solver"} as
+  the safe solver of @{text "ctxt"}.
+
+  \item @{text "ctxt addSSolver solver"} adds @{text "solver"} as an
+  additional safe solver; it will be tried after the solvers which had
+  already been present in @{text "ctxt"}.
+
+  \item @{text "ctxt setSolver solver"} installs @{text "solver"} as the
+  unsafe solver of @{text "ctxt"}.
+
+  \item @{text "ctxt addSolver solver"} adds @{text "solver"} as an
+  additional unsafe solver; it will be tried after the solvers which
+  had already been present in @{text "ctxt"}.
+
+  \end{description}
+
+  \medskip The solver tactic is invoked with the context of the
+  running Simplifier.  Further operations
+  may be used to retrieve relevant information, such as the list of
+  local Simplifier premises via @{ML Simplifier.prems_of} --- this
+  list may be non-empty only if the Simplifier runs in a mode that
+  utilizes local assumptions (see also \secref{sec:simp-meth}).  The
+  solver is also presented the full goal including its assumptions in
+  any case.  Thus it can use these (e.g.\ by calling @{ML
+  assume_tac}), even if the Simplifier proper happens to ignore local
+  premises at the moment.
+
+  \medskip As explained before, the subgoaler is also used to solve
+  the premises of congruence rules.  These are usually of the form
+  @{text "s = ?x"}, where @{text "s"} needs to be simplified and
+  @{text "?x"} needs to be instantiated with the result.  Typically,
+  the subgoaler will invoke the Simplifier at some point, which will
+  eventually call the solver.  For this reason, solver tactics must be
+  prepared to solve goals of the form @{text "t = ?x"}, usually by
+  reflexivity.  In particular, reflexivity should be tried before any
+  of the fancy automated proof tools.
+
+  It may even happen that due to simplification the subgoal is no
+  longer an equality.  For example, @{text "False \<longleftrightarrow> ?Q"} could be
+  rewritten to @{text "\<not> ?Q"}.  To cover this case, the solver could
+  try resolving with the theorem @{text "\<not> False"} of the
+  object-logic.
+
+  \medskip
+
+  \begin{warn}
+  If a premise of a congruence rule cannot be proved, then the
+  congruence is ignored.  This should only happen if the rule is
+  \emph{conditional} --- that is, contains premises not of the form
+  @{text "t = ?x"}.  Otherwise it indicates that some congruence rule,
+  or possibly the subgoaler or solver, is faulty.
+  \end{warn}
+*}
+
+
+subsubsection {* The looper *}
+
+text {*
+  \begin{mldecls}
+  @{index_ML_op setloop: "Proof.context *
+  (Proof.context -> int -> tactic) -> Proof.context"} \\
+  @{index_ML_op addloop: "Proof.context *
+  (string * (Proof.context -> int -> tactic))
+  -> Proof.context"} \\
+  @{index_ML_op delloop: "Proof.context * string -> Proof.context"} \\
+  @{index_ML Splitter.add_split: "thm -> Proof.context -> Proof.context"} \\
+  @{index_ML Splitter.del_split: "thm -> Proof.context -> Proof.context"} \\
+  \end{mldecls}
+
+  The looper is a list of tactics that are applied after
+  simplification, in case the solver failed to solve the simplified
+  goal.  If the looper succeeds, the simplification process is started
+  all over again.  Each of the subgoals generated by the looper is
+  attacked in turn, in reverse order.
+
+  A typical looper is \emph{case splitting}: the expansion of a
+  conditional.  Another possibility is to apply an elimination rule on
+  the assumptions.  More adventurous loopers could start an induction.
+
+  \begin{description}
+
+  \item @{text "ctxt setloop tac"} installs @{text "tac"} as the only
+  looper tactic of @{text "ctxt"}.
+
+  \item @{text "ctxt addloop (name, tac)"} adds @{text "tac"} as an
+  additional looper tactic with name @{text "name"}, which is
+  significant for managing the collection of loopers.  The tactic will
+  be tried after the looper tactics that had already been present in
+  @{text "ctxt"}.
+
+  \item @{text "ctxt delloop name"} deletes the looper tactic that was
+  associated with @{text "name"} from @{text "ctxt"}.
+
+  \item @{ML Splitter.add_split}~@{text "thm ctxt"} adds split tactics
+  for @{text "thm"} as additional looper tactics of @{text "ctxt"}.
+
+  \item @{ML Splitter.del_split}~@{text "thm ctxt"} deletes the split
+  tactic corresponding to @{text thm} from the looper tactics of
+  @{text "ctxt"}.
+
+  \end{description}
+
+  The splitter replaces applications of a given function; the
+  right-hand side of the replacement can be anything.  For example,
+  here is a splitting rule for conditional expressions:
+
+  @{text [display] "?P (if ?Q ?x ?y) \<longleftrightarrow> (?Q \<longrightarrow> ?P ?x) \<and> (\<not> ?Q \<longrightarrow> ?P ?y)"}
+
+  Another example is the elimination operator for Cartesian products
+  (which happens to be called @{text split} in Isabelle/HOL:
+
+  @{text [display] "?P (split ?f ?p) \<longleftrightarrow> (\<forall>a b. ?p = (a, b) \<longrightarrow> ?P (f a b))"}
+
+  For technical reasons, there is a distinction between case splitting
+  in the conclusion and in the premises of a subgoal.  The former is
+  done by @{ML Splitter.split_tac} with rules like @{thm [source]
+  split_if} or @{thm [source] option.split}, which do not split the
+  subgoal, while the latter is done by @{ML Splitter.split_asm_tac}
+  with rules like @{thm [source] split_if_asm} or @{thm [source]
+  option.split_asm}, which split the subgoal.  The function @{ML
+  Splitter.add_split} automatically takes care of which tactic to
+  call, analyzing the form of the rules given as argument; it is the
+  same operation behind @{text "split"} attribute or method modifier
+  syntax in the Isar source language.
+
+  Case splits should be allowed only when necessary; they are
+  expensive and hard to control.  Case-splitting on if-expressions in
+  the conclusion is usually beneficial, so it is enabled by default in
+  Isabelle/HOL and Isabelle/FOL/ZF.
+
+  \begin{warn}
+  With @{ML Splitter.split_asm_tac} as looper component, the
+  Simplifier may split subgoals!  This might cause unexpected problems
+  in tactic expressions that silently assume 0 or 1 subgoals after
+  simplification.
+  \end{warn}
+*}
+
+
+subsection {* Forward simplification \label{sec:simp-forward} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{attribute_def simplified} & : & @{text attribute} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{attribute simplified} opt? @{syntax thmrefs}?
+    ;
+
+    opt: '(' ('no_asm' | 'no_asm_simp' | 'no_asm_use') ')'
+  \<close>}
+
+  \begin{description}
+  
+  \item @{attribute simplified}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} causes a theorem to
+  be simplified, either by exactly the specified rules @{text "a\<^sub>1, \<dots>,
+  a\<^sub>n"}, or the implicit Simplifier context if no arguments are given.
+  The result is fully simplified by default, including assumptions and
+  conclusion; the options @{text no_asm} etc.\ tune the Simplifier in
+  the same way as the for the @{text simp} method.
+
+  Note that forward simplification restricts the simplifier to its
+  most basic operation of term rewriting; solver and looper tactics
+  (\secref{sec:simp-strategies}) are \emph{not} involved here.  The
+  @{attribute simplified} attribute should be only rarely required
+  under normal circumstances.
+
+  \end{description}
+*}
+
+
+section {* The Classical Reasoner \label{sec:classical} *}
+
+subsection {* Basic concepts *}
+
+text {* Although Isabelle is generic, many users will be working in
+  some extension of classical first-order logic.  Isabelle/ZF is built
+  upon theory FOL, while Isabelle/HOL conceptually contains
+  first-order logic as a fragment.  Theorem-proving in predicate logic
+  is undecidable, but many automated strategies have been developed to
+  assist in this task.
+
+  Isabelle's classical reasoner is a generic package that accepts
+  certain information about a logic and delivers a suite of automatic
+  proof tools, based on rules that are classified and declared in the
+  context.  These proof procedures are slow and simplistic compared
+  with high-end automated theorem provers, but they can save
+  considerable time and effort in practice.  They can prove theorems
+  such as Pelletier's \cite{pelletier86} problems 40 and 41 in a few
+  milliseconds (including full proof reconstruction): *}
+
+lemma "(\<exists>y. \<forall>x. F x y \<longleftrightarrow> F x x) \<longrightarrow> \<not> (\<forall>x. \<exists>y. \<forall>z. F z y \<longleftrightarrow> \<not> F z x)"
+  by blast
+
+lemma "(\<forall>z. \<exists>y. \<forall>x. f x y \<longleftrightarrow> f x z \<and> \<not> f x x) \<longrightarrow> \<not> (\<exists>z. \<forall>x. f x z)"
+  by blast
+
+text {* The proof tools are generic.  They are not restricted to
+  first-order logic, and have been heavily used in the development of
+  the Isabelle/HOL library and applications.  The tactics can be
+  traced, and their components can be called directly; in this manner,
+  any proof can be viewed interactively.  *}
+
+
+subsubsection {* The sequent calculus *}
+
+text {* Isabelle supports natural deduction, which is easy to use for
+  interactive proof.  But natural deduction does not easily lend
+  itself to automation, and has a bias towards intuitionism.  For
+  certain proofs in classical logic, it can not be called natural.
+  The \emph{sequent calculus}, a generalization of natural deduction,
+  is easier to automate.
+
+  A \textbf{sequent} has the form @{text "\<Gamma> \<turnstile> \<Delta>"}, where @{text "\<Gamma>"}
+  and @{text "\<Delta>"} are sets of formulae.\footnote{For first-order
+  logic, sequents can equivalently be made from lists or multisets of
+  formulae.} The sequent @{text "P\<^sub>1, \<dots>, P\<^sub>m \<turnstile> Q\<^sub>1, \<dots>, Q\<^sub>n"} is
+  \textbf{valid} if @{text "P\<^sub>1 \<and> \<dots> \<and> P\<^sub>m"} implies @{text "Q\<^sub>1 \<or> \<dots> \<or>
+  Q\<^sub>n"}.  Thus @{text "P\<^sub>1, \<dots>, P\<^sub>m"} represent assumptions, each of which
+  is true, while @{text "Q\<^sub>1, \<dots>, Q\<^sub>n"} represent alternative goals.  A
+  sequent is \textbf{basic} if its left and right sides have a common
+  formula, as in @{text "P, Q \<turnstile> Q, R"}; basic sequents are trivially
+  valid.
+
+  Sequent rules are classified as \textbf{right} or \textbf{left},
+  indicating which side of the @{text "\<turnstile>"} symbol they operate on.
+  Rules that operate on the right side are analogous to natural
+  deduction's introduction rules, and left rules are analogous to
+  elimination rules.  The sequent calculus analogue of @{text "(\<longrightarrow>I)"}
+  is the rule
+  \[
+  \infer[@{text "(\<longrightarrow>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, P \<longrightarrow> Q"}}{@{text "P, \<Gamma> \<turnstile> \<Delta>, Q"}}
+  \]
+  Applying the rule backwards, this breaks down some implication on
+  the right side of a sequent; @{text "\<Gamma>"} and @{text "\<Delta>"} stand for
+  the sets of formulae that are unaffected by the inference.  The
+  analogue of the pair @{text "(\<or>I1)"} and @{text "(\<or>I2)"} is the
+  single rule
+  \[
+  \infer[@{text "(\<or>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, P \<or> Q"}}{@{text "\<Gamma> \<turnstile> \<Delta>, P, Q"}}
+  \]
+  This breaks down some disjunction on the right side, replacing it by
+  both disjuncts.  Thus, the sequent calculus is a kind of
+  multiple-conclusion logic.
+
+  To illustrate the use of multiple formulae on the right, let us
+  prove the classical theorem @{text "(P \<longrightarrow> Q) \<or> (Q \<longrightarrow> P)"}.  Working
+  backwards, we reduce this formula to a basic sequent:
+  \[
+  \infer[@{text "(\<or>R)"}]{@{text "\<turnstile> (P \<longrightarrow> Q) \<or> (Q \<longrightarrow> P)"}}
+    {\infer[@{text "(\<longrightarrow>R)"}]{@{text "\<turnstile> (P \<longrightarrow> Q), (Q \<longrightarrow> P)"}}
+      {\infer[@{text "(\<longrightarrow>R)"}]{@{text "P \<turnstile> Q, (Q \<longrightarrow> P)"}}
+        {@{text "P, Q \<turnstile> Q, P"}}}}
+  \]
+
+  This example is typical of the sequent calculus: start with the
+  desired theorem and apply rules backwards in a fairly arbitrary
+  manner.  This yields a surprisingly effective proof procedure.
+  Quantifiers add only few complications, since Isabelle handles
+  parameters and schematic variables.  See \cite[Chapter
+  10]{paulson-ml2} for further discussion.  *}
+
+
+subsubsection {* Simulating sequents by natural deduction *}
+
+text {* Isabelle can represent sequents directly, as in the
+  object-logic LK.  But natural deduction is easier to work with, and
+  most object-logics employ it.  Fortunately, we can simulate the
+  sequent @{text "P\<^sub>1, \<dots>, P\<^sub>m \<turnstile> Q\<^sub>1, \<dots>, Q\<^sub>n"} by the Isabelle formula
+  @{text "P\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> P\<^sub>m \<Longrightarrow> \<not> Q\<^sub>2 \<Longrightarrow> ... \<Longrightarrow> \<not> Q\<^sub>n \<Longrightarrow> Q\<^sub>1"} where the order of
+  the assumptions and the choice of @{text "Q\<^sub>1"} are arbitrary.
+  Elim-resolution plays a key role in simulating sequent proofs.
+
+  We can easily handle reasoning on the left.  Elim-resolution with
+  the rules @{text "(\<or>E)"}, @{text "(\<bottom>E)"} and @{text "(\<exists>E)"} achieves
+  a similar effect as the corresponding sequent rules.  For the other
+  connectives, we use sequent-style elimination rules instead of
+  destruction rules such as @{text "(\<and>E1, 2)"} and @{text "(\<forall>E)"}.
+  But note that the rule @{text "(\<not>L)"} has no effect under our
+  representation of sequents!
+  \[
+  \infer[@{text "(\<not>L)"}]{@{text "\<not> P, \<Gamma> \<turnstile> \<Delta>"}}{@{text "\<Gamma> \<turnstile> \<Delta>, P"}}
+  \]
+
+  What about reasoning on the right?  Introduction rules can only
+  affect the formula in the conclusion, namely @{text "Q\<^sub>1"}.  The
+  other right-side formulae are represented as negated assumptions,
+  @{text "\<not> Q\<^sub>2, \<dots>, \<not> Q\<^sub>n"}.  In order to operate on one of these, it
+  must first be exchanged with @{text "Q\<^sub>1"}.  Elim-resolution with the
+  @{text swap} rule has this effect: @{text "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"}
+
+  To ensure that swaps occur only when necessary, each introduction
+  rule is converted into a swapped form: it is resolved with the
+  second premise of @{text "(swap)"}.  The swapped form of @{text
+  "(\<and>I)"}, which might be called @{text "(\<not>\<and>E)"}, is
+  @{text [display] "\<not> (P \<and> Q) \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (\<not> R \<Longrightarrow> Q) \<Longrightarrow> R"}
+
+  Similarly, the swapped form of @{text "(\<longrightarrow>I)"} is
+  @{text [display] "\<not> (P \<longrightarrow> Q) \<Longrightarrow> (\<not> R \<Longrightarrow> P \<Longrightarrow> Q) \<Longrightarrow> R"}
+
+  Swapped introduction rules are applied using elim-resolution, which
+  deletes the negated formula.  Our representation of sequents also
+  requires the use of ordinary introduction rules.  If we had no
+  regard for readability of intermediate goal states, we could treat
+  the right side more uniformly by representing sequents as @{text
+  [display] "P\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> P\<^sub>m \<Longrightarrow> \<not> Q\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> \<not> Q\<^sub>n \<Longrightarrow> \<bottom>"}
+*}
+
+
+subsubsection {* Extra rules for the sequent calculus *}
+
+text {* As mentioned, destruction rules such as @{text "(\<and>E1, 2)"} and
+  @{text "(\<forall>E)"} must be replaced by sequent-style elimination rules.
+  In addition, we need rules to embody the classical equivalence
+  between @{text "P \<longrightarrow> Q"} and @{text "\<not> P \<or> Q"}.  The introduction
+  rules @{text "(\<or>I1, 2)"} are replaced by a rule that simulates
+  @{text "(\<or>R)"}: @{text [display] "(\<not> Q \<Longrightarrow> P) \<Longrightarrow> P \<or> Q"}
+
+  The destruction rule @{text "(\<longrightarrow>E)"} is replaced by @{text [display]
+  "(P \<longrightarrow> Q) \<Longrightarrow> (\<not> P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"}
+
+  Quantifier replication also requires special rules.  In classical
+  logic, @{text "\<exists>x. P x"} is equivalent to @{text "\<not> (\<forall>x. \<not> P x)"};
+  the rules @{text "(\<exists>R)"} and @{text "(\<forall>L)"} are dual:
+  \[
+  \infer[@{text "(\<exists>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, \<exists>x. P x"}}{@{text "\<Gamma> \<turnstile> \<Delta>, \<exists>x. P x, P t"}}
+  \qquad
+  \infer[@{text "(\<forall>L)"}]{@{text "\<forall>x. P x, \<Gamma> \<turnstile> \<Delta>"}}{@{text "P t, \<forall>x. P x, \<Gamma> \<turnstile> \<Delta>"}}
+  \]
+  Thus both kinds of quantifier may be replicated.  Theorems requiring
+  multiple uses of a universal formula are easy to invent; consider
+  @{text [display] "(\<forall>x. P x \<longrightarrow> P (f x)) \<and> P a \<longrightarrow> P (f\<^sup>n a)"} for any
+  @{text "n > 1"}.  Natural examples of the multiple use of an
+  existential formula are rare; a standard one is @{text "\<exists>x. \<forall>y. P x
+  \<longrightarrow> P y"}.
+
+  Forgoing quantifier replication loses completeness, but gains
+  decidability, since the search space becomes finite.  Many useful
+  theorems can be proved without replication, and the search generally
+  delivers its verdict in a reasonable time.  To adopt this approach,
+  represent the sequent rules @{text "(\<exists>R)"}, @{text "(\<exists>L)"} and
+  @{text "(\<forall>R)"} by @{text "(\<exists>I)"}, @{text "(\<exists>E)"} and @{text "(\<forall>I)"},
+  respectively, and put @{text "(\<forall>E)"} into elimination form: @{text
+  [display] "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> Q) \<Longrightarrow> Q"}
+
+  Elim-resolution with this rule will delete the universal formula
+  after a single use.  To replicate universal quantifiers, replace the
+  rule by @{text [display] "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q) \<Longrightarrow> Q"}
+
+  To replicate existential quantifiers, replace @{text "(\<exists>I)"} by
+  @{text [display] "(\<not> (\<exists>x. P x) \<Longrightarrow> P t) \<Longrightarrow> \<exists>x. P x"}
+
+  All introduction rules mentioned above are also useful in swapped
+  form.
+
+  Replication makes the search space infinite; we must apply the rules
+  with care.  The classical reasoner distinguishes between safe and
+  unsafe rules, applying the latter only when there is no alternative.
+  Depth-first search may well go down a blind alley; best-first search
+  is better behaved in an infinite search space.  However, quantifier
+  replication is too expensive to prove any but the simplest theorems.
+*}
+
+
+subsection {* Rule declarations *}
+
+text {* The proof tools of the Classical Reasoner depend on
+  collections of rules declared in the context, which are classified
+  as introduction, elimination or destruction and as \emph{safe} or
+  \emph{unsafe}.  In general, safe rules can be attempted blindly,
+  while unsafe rules must be used with care.  A safe rule must never
+  reduce a provable goal to an unprovable set of subgoals.
+
+  The rule @{text "P \<Longrightarrow> P \<or> Q"} is unsafe because it reduces @{text "P
+  \<or> Q"} to @{text "P"}, which might turn out as premature choice of an
+  unprovable subgoal.  Any rule is unsafe whose premises contain new
+  unknowns.  The elimination rule @{text "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> Q) \<Longrightarrow> Q"} is
+  unsafe, since it is applied via elim-resolution, which discards the
+  assumption @{text "\<forall>x. P x"} and replaces it by the weaker
+  assumption @{text "P t"}.  The rule @{text "P t \<Longrightarrow> \<exists>x. P x"} is
+  unsafe for similar reasons.  The quantifier duplication rule @{text
+  "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q) \<Longrightarrow> Q"} is unsafe in a different sense:
+  since it keeps the assumption @{text "\<forall>x. P x"}, it is prone to
+  looping.  In classical first-order logic, all rules are safe except
+  those mentioned above.
+
+  The safe~/ unsafe distinction is vague, and may be regarded merely
+  as a way of giving some rules priority over others.  One could argue
+  that @{text "(\<or>E)"} is unsafe, because repeated application of it
+  could generate exponentially many subgoals.  Induction rules are
+  unsafe because inductive proofs are difficult to set up
+  automatically.  Any inference is unsafe that instantiates an unknown
+  in the proof state --- thus matching must be used, rather than
+  unification.  Even proof by assumption is unsafe if it instantiates
+  unknowns shared with other subgoals.
+
+  \begin{matharray}{rcl}
+    @{command_def "print_claset"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
+    @{attribute_def intro} & : & @{text attribute} \\
+    @{attribute_def elim} & : & @{text attribute} \\
+    @{attribute_def dest} & : & @{text attribute} \\
+    @{attribute_def rule} & : & @{text attribute} \\
+    @{attribute_def iff} & : & @{text attribute} \\
+    @{attribute_def swapped} & : & @{text attribute} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{attribute intro} | @@{attribute elim} | @@{attribute dest}) ('!' | () | '?') @{syntax nat}?
+    ;
+    @@{attribute rule} 'del'
+    ;
+    @@{attribute iff} (((() | 'add') '?'?) | 'del')
+  \<close>}
+
+  \begin{description}
+
+  \item @{command "print_claset"} prints the collection of rules
+  declared to the Classical Reasoner, i.e.\ the @{ML_type claset}
+  within the context.
+
+  \item @{attribute intro}, @{attribute elim}, and @{attribute dest}
+  declare introduction, elimination, and destruction rules,
+  respectively.  By default, rules are considered as \emph{unsafe}
+  (i.e.\ not applied blindly without backtracking), while ``@{text
+  "!"}'' classifies as \emph{safe}.  Rule declarations marked by
+  ``@{text "?"}'' coincide with those of Isabelle/Pure, cf.\
+  \secref{sec:pure-meth-att} (i.e.\ are only applied in single steps
+  of the @{method rule} method).  The optional natural number
+  specifies an explicit weight argument, which is ignored by the
+  automated reasoning tools, but determines the search order of single
+  rule steps.
+
+  Introduction rules are those that can be applied using ordinary
+  resolution.  Their swapped forms are generated internally, which
+  will be applied using elim-resolution.  Elimination rules are
+  applied using elim-resolution.  Rules are sorted by the number of
+  new subgoals they will yield; rules that generate the fewest
+  subgoals will be tried first.  Otherwise, later declarations take
+  precedence over earlier ones.
+
+  Rules already present in the context with the same classification
+  are ignored.  A warning is printed if the rule has already been
+  added with some other classification, but the rule is added anyway
+  as requested.
+
+  \item @{attribute rule}~@{text del} deletes all occurrences of a
+  rule from the classical context, regardless of its classification as
+  introduction~/ elimination~/ destruction and safe~/ unsafe.
+
+  \item @{attribute iff} declares logical equivalences to the
+  Simplifier and the Classical reasoner at the same time.
+  Non-conditional rules result in a safe introduction and elimination
+  pair; conditional ones are considered unsafe.  Rules with negative
+  conclusion are automatically inverted (using @{text "\<not>"}-elimination
+  internally).
+
+  The ``@{text "?"}'' version of @{attribute iff} declares rules to
+  the Isabelle/Pure context only, and omits the Simplifier
+  declaration.
+
+  \item @{attribute swapped} turns an introduction rule into an
+  elimination, by resolving with the classical swap principle @{text
+  "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"} in the second position.  This is mainly for
+  illustrative purposes: the Classical Reasoner already swaps rules
+  internally as explained above.
+
+  \end{description}
+*}
+
+
+subsection {* Structured methods *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def rule} & : & @{text method} \\
+    @{method_def contradiction} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{method rule} @{syntax thmrefs}?
+  \<close>}
+
+  \begin{description}
+
+  \item @{method rule} as offered by the Classical Reasoner is a
+  refinement over the Pure one (see \secref{sec:pure-meth-att}).  Both
+  versions work the same, but the classical version observes the
+  classical rule context in addition to that of Isabelle/Pure.
+
+  Common object logics (HOL, ZF, etc.) declare a rich collection of
+  classical rules (even if these would qualify as intuitionistic
+  ones), but only few declarations to the rule context of
+  Isabelle/Pure (\secref{sec:pure-meth-att}).
+
+  \item @{method contradiction} solves some goal by contradiction,
+  deriving any result from both @{text "\<not> A"} and @{text A}.  Chained
+  facts, which are guaranteed to participate, may appear in either
+  order.
+
+  \end{description}
+*}
+
+
+subsection {* Fully automated methods *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def blast} & : & @{text method} \\
+    @{method_def auto} & : & @{text method} \\
+    @{method_def force} & : & @{text method} \\
+    @{method_def fast} & : & @{text method} \\
+    @{method_def slow} & : & @{text method} \\
+    @{method_def best} & : & @{text method} \\
+    @{method_def fastforce} & : & @{text method} \\
+    @{method_def slowsimp} & : & @{text method} \\
+    @{method_def bestsimp} & : & @{text method} \\
+    @{method_def deepen} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    @@{method blast} @{syntax nat}? (@{syntax clamod} * )
+    ;
+    @@{method auto} (@{syntax nat} @{syntax nat})? (@{syntax clasimpmod} * )
+    ;
+    @@{method force} (@{syntax clasimpmod} * )
+    ;
+    (@@{method fast} | @@{method slow} | @@{method best}) (@{syntax clamod} * )
+    ;
+    (@@{method fastforce} | @@{method slowsimp} | @@{method bestsimp})
+      (@{syntax clasimpmod} * )
+    ;
+    @@{method deepen} (@{syntax nat} ?) (@{syntax clamod} * )
+    ;
+    @{syntax_def clamod}:
+      (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del') ':' @{syntax thmrefs}
+    ;
+    @{syntax_def clasimpmod}: ('simp' (() | 'add' | 'del' | 'only') |
+      ('cong' | 'split') (() | 'add' | 'del') |
+      'iff' (((() | 'add') '?'?) | 'del') |
+      (('intro' | 'elim' | 'dest') ('!' | () | '?') | 'del')) ':' @{syntax thmrefs}
+  \<close>}
+
+  \begin{description}
+
+  \item @{method blast} is a separate classical tableau prover that
+  uses the same classical rule declarations as explained before.
+
+  Proof search is coded directly in ML using special data structures.
+  A successful proof is then reconstructed using regular Isabelle
+  inferences.  It is faster and more powerful than the other classical
+  reasoning tools, but has major limitations too.
+
+  \begin{itemize}
+
+  \item It does not use the classical wrapper tacticals, such as the
+  integration with the Simplifier of @{method fastforce}.
+
+  \item It does not perform higher-order unification, as needed by the
+  rule @{thm [source=false] rangeI} in HOL.  There are often
+  alternatives to such rules, for example @{thm [source=false]
+  range_eqI}.
+
+  \item Function variables may only be applied to parameters of the
+  subgoal.  (This restriction arises because the prover does not use
+  higher-order unification.)  If other function variables are present
+  then the prover will fail with the message \texttt{Function Var's
+  argument not a bound variable}.
+
+  \item Its proof strategy is more general than @{method fast} but can
+  be slower.  If @{method blast} fails or seems to be running forever,
+  try @{method fast} and the other proof tools described below.
+
+  \end{itemize}
+
+  The optional integer argument specifies a bound for the number of
+  unsafe steps used in a proof.  By default, @{method blast} starts
+  with a bound of 0 and increases it successively to 20.  In contrast,
+  @{text "(blast lim)"} tries to prove the goal using a search bound
+  of @{text "lim"}.  Sometimes a slow proof using @{method blast} can
+  be made much faster by supplying the successful search bound to this
+  proof method instead.
+
+  \item @{method auto} combines classical reasoning with
+  simplification.  It is intended for situations where there are a lot
+  of mostly trivial subgoals; it proves all the easy ones, leaving the
+  ones it cannot prove.  Occasionally, attempting to prove the hard
+  ones may take a long time.
+
+  The optional depth arguments in @{text "(auto m n)"} refer to its
+  builtin classical reasoning procedures: @{text m} (default 4) is for
+  @{method blast}, which is tried first, and @{text n} (default 2) is
+  for a slower but more general alternative that also takes wrappers
+  into account.
+
+  \item @{method force} is intended to prove the first subgoal
+  completely, using many fancy proof tools and performing a rather
+  exhaustive search.  As a result, proof attempts may take rather long
+  or diverge easily.
+
+  \item @{method fast}, @{method best}, @{method slow} attempt to
+  prove the first subgoal using sequent-style reasoning as explained
+  before.  Unlike @{method blast}, they construct proofs directly in
+  Isabelle.
+
+  There is a difference in search strategy and back-tracking: @{method
+  fast} uses depth-first search and @{method best} uses best-first
+  search (guided by a heuristic function: normally the total size of
+  the proof state).
+
+  Method @{method slow} is like @{method fast}, but conducts a broader
+  search: it may, when backtracking from a failed proof attempt, undo
+  even the step of proving a subgoal by assumption.
+
+  \item @{method fastforce}, @{method slowsimp}, @{method bestsimp}
+  are like @{method fast}, @{method slow}, @{method best},
+  respectively, but use the Simplifier as additional wrapper. The name
+  @{method fastforce}, reflects the behaviour of this popular method
+  better without requiring an understanding of its implementation.
+
+  \item @{method deepen} works by exhaustive search up to a certain
+  depth.  The start depth is 4 (unless specified explicitly), and the
+  depth is increased iteratively up to 10.  Unsafe rules are modified
+  to preserve the formula they act on, so that it be used repeatedly.
+  This method can prove more goals than @{method fast}, but is much
+  slower, for example if the assumptions have many universal
+  quantifiers.
+
+  \end{description}
+
+  Any of the above methods support additional modifiers of the context
+  of classical (and simplifier) rules, but the ones related to the
+  Simplifier are explicitly prefixed by @{text simp} here.  The
+  semantics of these ad-hoc rule declarations is analogous to the
+  attributes given before.  Facts provided by forward chaining are
+  inserted into the goal before commencing proof search.
+*}
+
+
+subsection {* Partially automated methods *}
+
+text {* These proof methods may help in situations when the
+  fully-automated tools fail.  The result is a simpler subgoal that
+  can be tackled by other means, such as by manual instantiation of
+  quantifiers.
+
+  \begin{matharray}{rcl}
+    @{method_def safe} & : & @{text method} \\
+    @{method_def clarify} & : & @{text method} \\
+    @{method_def clarsimp} & : & @{text method} \\
+  \end{matharray}
+
+  @{rail \<open>
+    (@@{method safe} | @@{method clarify}) (@{syntax clamod} * )
+    ;
+    @@{method clarsimp} (@{syntax clasimpmod} * )
+  \<close>}
+
+  \begin{description}
+
+  \item @{method safe} repeatedly performs safe steps on all subgoals.
+  It is deterministic, with at most one outcome.
+
+  \item @{method clarify} performs a series of safe steps without
+  splitting subgoals; see also @{method clarify_step}.
+
+  \item @{method clarsimp} acts like @{method clarify}, but also does
+  simplification.  Note that if the Simplifier context includes a
+  splitter for the premises, the subgoal may still be split.
+
+  \end{description}
+*}
+
+
+subsection {* Single-step tactics *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{method_def safe_step} & : & @{text method} \\
+    @{method_def inst_step} & : & @{text method} \\
+    @{method_def step} & : & @{text method} \\
+    @{method_def slow_step} & : & @{text method} \\
+    @{method_def clarify_step} & : &  @{text method} \\
+  \end{matharray}
+
+  These are the primitive tactics behind the automated proof methods
+  of the Classical Reasoner.  By calling them yourself, you can
+  execute these procedures one step at a time.
+
+  \begin{description}
+
+  \item @{method safe_step} performs a safe step on the first subgoal.
+  The safe wrapper tacticals are applied to a tactic that may include
+  proof by assumption or Modus Ponens (taking care not to instantiate
+  unknowns), or substitution.
+
+  \item @{method inst_step} is like @{method safe_step}, but allows
+  unknowns to be instantiated.
+
+  \item @{method step} is the basic step of the proof procedure, it
+  operates on the first subgoal.  The unsafe wrapper tacticals are
+  applied to a tactic that tries @{method safe}, @{method inst_step},
+  or applies an unsafe rule from the context.
+
+  \item @{method slow_step} resembles @{method step}, but allows
+  backtracking between using safe rules with instantiation (@{method
+  inst_step}) and using unsafe rules.  The resulting search space is
+  larger.
+
+  \item @{method clarify_step} performs a safe step on the first
+  subgoal; no splitting step is applied.  For example, the subgoal
+  @{text "A \<and> B"} is left as a conjunction.  Proof by assumption,
+  Modus Ponens, etc., may be performed provided they do not
+  instantiate unknowns.  Assumptions of the form @{text "x = t"} may
+  be eliminated.  The safe wrapper tactical is applied.
+
+  \end{description}
+*}
+
+
+subsection {* Modifying the search step *}
+
+text {*
+  \begin{mldecls}
+    @{index_ML_type wrapper: "(int -> tactic) -> (int -> tactic)"} \\[0.5ex]
+    @{index_ML_op addSWrapper: "Proof.context *
+  (string * (Proof.context -> wrapper)) -> Proof.context"} \\
+    @{index_ML_op addSbefore: "Proof.context *
+  (string * (Proof.context -> int -> tactic)) -> Proof.context"} \\
+    @{index_ML_op addSafter: "Proof.context *
+  (string * (Proof.context -> int -> tactic)) -> Proof.context"} \\
+    @{index_ML_op delSWrapper: "Proof.context * string -> Proof.context"} \\[0.5ex]
+    @{index_ML_op addWrapper: "Proof.context *
+  (string * (Proof.context -> wrapper)) -> Proof.context"} \\
+    @{index_ML_op addbefore: "Proof.context *
+  (string * (Proof.context -> int -> tactic)) -> Proof.context"} \\
+    @{index_ML_op addafter: "Proof.context *
+  (string * (Proof.context -> int -> tactic)) -> Proof.context"} \\
+    @{index_ML_op delWrapper: "Proof.context * string -> Proof.context"} \\[0.5ex]
+    @{index_ML addSss: "Proof.context -> Proof.context"} \\
+    @{index_ML addss: "Proof.context -> Proof.context"} \\
+  \end{mldecls}
+
+  The proof strategy of the Classical Reasoner is simple.  Perform as
+  many safe inferences as possible; or else, apply certain safe rules,
+  allowing instantiation of unknowns; or else, apply an unsafe rule.
+  The tactics also eliminate assumptions of the form @{text "x = t"}
+  by substitution if they have been set up to do so.  They may perform
+  a form of Modus Ponens: if there are assumptions @{text "P \<longrightarrow> Q"} and
+  @{text "P"}, then replace @{text "P \<longrightarrow> Q"} by @{text "Q"}.
+
+  The classical reasoning tools --- except @{method blast} --- allow
+  to modify this basic proof strategy by applying two lists of
+  arbitrary \emph{wrapper tacticals} to it.  The first wrapper list,
+  which is considered to contain safe wrappers only, affects @{method
+  safe_step} and all the tactics that call it.  The second one, which
+  may contain unsafe wrappers, affects the unsafe parts of @{method
+  step}, @{method slow_step}, and the tactics that call them.  A
+  wrapper transforms each step of the search, for example by
+  attempting other tactics before or after the original step tactic.
+  All members of a wrapper list are applied in turn to the respective
+  step tactic.
+
+  Initially the two wrapper lists are empty, which means no
+  modification of the step tactics. Safe and unsafe wrappers are added
+  to a claset with the functions given below, supplying them with
+  wrapper names.  These names may be used to selectively delete
+  wrappers.
+
+  \begin{description}
+
+  \item @{text "ctxt addSWrapper (name, wrapper)"} adds a new wrapper,
+  which should yield a safe tactic, to modify the existing safe step
+  tactic.
+
+  \item @{text "ctxt addSbefore (name, tac)"} adds the given tactic as a
+  safe wrapper, such that it is tried \emph{before} each safe step of
+  the search.
+
+  \item @{text "ctxt addSafter (name, tac)"} adds the given tactic as a
+  safe wrapper, such that it is tried when a safe step of the search
+  would fail.
+
+  \item @{text "ctxt delSWrapper name"} deletes the safe wrapper with
+  the given name.
+
+  \item @{text "ctxt addWrapper (name, wrapper)"} adds a new wrapper to
+  modify the existing (unsafe) step tactic.
+
+  \item @{text "ctxt addbefore (name, tac)"} adds the given tactic as an
+  unsafe wrapper, such that it its result is concatenated
+  \emph{before} the result of each unsafe step.
+
+  \item @{text "ctxt addafter (name, tac)"} adds the given tactic as an
+  unsafe wrapper, such that it its result is concatenated \emph{after}
+  the result of each unsafe step.
+
+  \item @{text "ctxt delWrapper name"} deletes the unsafe wrapper with
+  the given name.
+
+  \item @{text "addSss"} adds the simpset of the context to its
+  classical set. The assumptions and goal will be simplified, in a
+  rather safe way, after each safe step of the search.
+
+  \item @{text "addss"} adds the simpset of the context to its
+  classical set. The assumptions and goal will be simplified, before
+  the each unsafe step of the search.
+
+  \end{description}
+*}
+
+
+section {* Object-logic setup \label{sec:object-logic} *}
+
+text {*
+  \begin{matharray}{rcl}
+    @{command_def "judgment"} & : & @{text "theory \<rightarrow> theory"} \\
+    @{method_def atomize} & : & @{text method} \\
+    @{attribute_def atomize} & : & @{text attribute} \\
+    @{attribute_def rule_format} & : & @{text attribute} \\
+    @{attribute_def rulify} & : & @{text attribute} \\
+  \end{matharray}
+
+  The very starting point for any Isabelle object-logic is a ``truth
+  judgment'' that links object-level statements to the meta-logic
+  (with its minimal language of @{text prop} that covers universal
+  quantification @{text "\<And>"} and implication @{text "\<Longrightarrow>"}).
+
+  Common object-logics are sufficiently expressive to internalize rule
+  statements over @{text "\<And>"} and @{text "\<Longrightarrow>"} within their own
+  language.  This is useful in certain situations where a rule needs
+  to be viewed as an atomic statement from the meta-level perspective,
+  e.g.\ @{text "\<And>x. x \<in> A \<Longrightarrow> P x"} versus @{text "\<forall>x \<in> A. P x"}.
+
+  From the following language elements, only the @{method atomize}
+  method and @{attribute rule_format} attribute are occasionally
+  required by end-users, the rest is for those who need to setup their
+  own object-logic.  In the latter case existing formulations of
+  Isabelle/FOL or Isabelle/HOL may be taken as realistic examples.
+
+  Generic tools may refer to the information provided by object-logic
+  declarations internally.
+
+  @{rail \<open>
+    @@{command judgment} @{syntax name} '::' @{syntax type} @{syntax mixfix}?
+    ;
+    @@{attribute atomize} ('(' 'full' ')')?
+    ;
+    @@{attribute rule_format} ('(' 'noasm' ')')?
+  \<close>}
+
+  \begin{description}
+  
+  \item @{command "judgment"}~@{text "c :: \<sigma> (mx)"} declares constant
+  @{text c} as the truth judgment of the current object-logic.  Its
+  type @{text \<sigma>} should specify a coercion of the category of
+  object-level propositions to @{text prop} of the Pure meta-logic;
+  the mixfix annotation @{text "(mx)"} would typically just link the
+  object language (internally of syntactic category @{text logic})
+  with that of @{text prop}.  Only one @{command "judgment"}
+  declaration may be given in any theory development.
+  
+  \item @{method atomize} (as a method) rewrites any non-atomic
+  premises of a sub-goal, using the meta-level equations declared via
+  @{attribute atomize} (as an attribute) beforehand.  As a result,
+  heavily nested goals become amenable to fundamental operations such
+  as resolution (cf.\ the @{method (Pure) rule} method).  Giving the ``@{text
+  "(full)"}'' option here means to turn the whole subgoal into an
+  object-statement (if possible), including the outermost parameters
+  and assumptions as well.
+
+  A typical collection of @{attribute atomize} rules for a particular
+  object-logic would provide an internalization for each of the
+  connectives of @{text "\<And>"}, @{text "\<Longrightarrow>"}, and @{text "\<equiv>"}.
+  Meta-level conjunction should be covered as well (this is
+  particularly important for locales, see \secref{sec:locale}).
+
+  \item @{attribute rule_format} rewrites a theorem by the equalities
+  declared as @{attribute rulify} rules in the current object-logic.
+  By default, the result is fully normalized, including assumptions
+  and conclusions at any depth.  The @{text "(no_asm)"} option
+  restricts the transformation to the conclusion of a rule.
+
+  In common object-logics (HOL, FOL, ZF), the effect of @{attribute
+  rule_format} is to replace (bounded) universal quantification
+  (@{text "\<forall>"}) and implication (@{text "\<longrightarrow>"}) by the corresponding
+  rule statements over @{text "\<And>"} and @{text "\<Longrightarrow>"}.
+
+  \end{description}
+*}
+
+
+section {* Tracing higher-order unification *}
+
+text {*
+  \begin{tabular}{rcll}
+    @{attribute_def unify_trace_simp} & : & @{text "attribute"} & default @{text "false"} \\
+    @{attribute_def unify_trace_types} & : & @{text "attribute"} & default @{text "false"} \\
+    @{attribute_def unify_trace_bound} & : & @{text "attribute"} & default @{text "50"} \\
+    @{attribute_def unify_search_bound} & : & @{text "attribute"} & default @{text "60"} \\
+  \end{tabular}
+  \medskip
+
+  Higher-order unification works well in most practical situations,
+  but sometimes needs extra care to identify problems.  These tracing
+  options may help.
+
+  \begin{description}
+
+  \item @{attribute unify_trace_simp} controls tracing of the
+  simplification phase of higher-order unification.
+
+  \item @{attribute unify_trace_types} controls warnings of
+  incompleteness, when unification is not considering all possible
+  instantiations of schematic type variables.
+
+  \item @{attribute unify_trace_bound} determines the depth where
+  unification starts to print tracing information once it reaches
+  depth; 0 for full tracing.  At the default value, tracing
+  information is almost never printed in practice.
+
+  \item @{attribute unify_search_bound} prevents unification from
+  searching past the given depth.  Because of this bound, higher-order
+  unification cannot return an infinite sequence, though it can return
+  an exponentially long one.  The search rarely approaches the default
+  value in practice.  If the search is cut off, unification prints a
+  warning ``Unification bound exceeded''.
+
+  \end{description}
+
+  \begin{warn}
+  Options for unification cannot be modified in a local context.  Only
+  the global theory content is taken into account.
+  \end{warn}
+*}
+
+end