doc-src/TutorialI/CTL/document/CTLind.tex
changeset 10589 b2d1b393b750
parent 10395 7ef380745743
child 10601 894f845c3dbf
--- a/doc-src/TutorialI/CTL/document/CTLind.tex	Mon Dec 04 23:36:16 2000 +0100
+++ b/doc-src/TutorialI/CTL/document/CTLind.tex	Mon Dec 04 23:38:19 2000 +0100
@@ -121,7 +121,7 @@
 into a \isa{{\isasymAnd}p}, which would complicate matters below. As it is,
 \isa{Avoid{\isacharunderscore}in{\isacharunderscore}lfp} is now
 \begin{isabelle}%
-\ \ \ \ \ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
+\ \ \ \ \ {\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
 \end{isabelle}
 The main theorem is simply the corollary where \isa{t\ {\isacharequal}\ s},
 in which case the assumption \isa{t\ {\isasymin}\ Avoid\ s\ A} is trivially true