--- a/src/ZF/ex/Mutil.ML Mon May 21 14:35:54 2001 +0200
+++ b/src/ZF/ex/Mutil.ML Mon May 21 14:36:24 2001 +0200
@@ -15,7 +15,7 @@
by (Blast_tac 1);
qed "evnodd_iff";
-Goalw [evnodd_def] "evnodd(A, b) <= A";
+Goalw [evnodd_def] "evnodd(A, b) \\<subseteq> A";
by (Blast_tac 1);
qed "evnodd_subset";
@@ -44,11 +44,11 @@
(*** Dominoes ***)
-Goal "d:domino ==> Finite(d)";
+Goal "d \\<in> domino ==> Finite(d)";
by (blast_tac (claset() addSIs [Finite_cons, Finite_0] addEs [domino.elim]) 1);
qed "domino_Finite";
-Goal "[| d:domino; b<2 |] ==> EX i' j'. evnodd(d,b) = {<i',j'>}";
+Goal "[| d \\<in> domino; b<2 |] ==> \\<exists>i' j'. evnodd(d,b) = {<i',j'>}";
by (eresolve_tac [domino.elim] 1);
by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 2);
by (res_inst_tac [("k1", "i#+j")] (mod2_cases RS disjE) 1);
@@ -63,8 +63,8 @@
(** The union of two disjoint tilings is a tiling **)
-Goal "t: tiling(A) ==> \
-\ u: tiling(A) --> t Int u = 0 --> t Un u : tiling(A)";
+Goal "t \\<in> tiling(A) ==> \
+\ u \\<in> tiling(A) --> t Int u = 0 --> t Un u \\<in> tiling(A)";
by (etac tiling.induct 1);
by (simp_tac (simpset() addsimps tiling.intrs) 1);
by (asm_full_simp_tac (simpset() addsimps [Un_assoc,
@@ -72,13 +72,13 @@
by (blast_tac (claset() addIs tiling.intrs) 1);
qed_spec_mp "tiling_UnI";
-Goal "t:tiling(domino) ==> Finite(t)";
+Goal "t \\<in> tiling(domino) ==> Finite(t)";
by (eresolve_tac [tiling.induct] 1);
by (rtac Finite_0 1);
by (blast_tac (claset() addSIs [Finite_Un] addIs [domino_Finite]) 1);
qed "tiling_domino_Finite";
-Goal "t: tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|";
+Goal "t \\<in> tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|";
by (eresolve_tac [tiling.induct] 1);
by (simp_tac (simpset() addsimps [evnodd_def]) 1);
by (res_inst_tac [("b1","0")] (domino_singleton RS exE) 1);
@@ -86,7 +86,7 @@
by (res_inst_tac [("b1","1")] (domino_singleton RS exE) 1);
by (Simp_tac 2 THEN assume_tac 1);
by Safe_tac;
-by (subgoal_tac "ALL p b. p:evnodd(a,b) --> p~:evnodd(t,b)" 1);
+by (subgoal_tac "\\<forall>p b. p \\<in> evnodd(a,b) --> p\\<notin>evnodd(t,b)" 1);
by (asm_simp_tac
(simpset() addsimps [evnodd_Un, Un_cons, tiling_domino_Finite,
evnodd_subset RS subset_Finite,
@@ -95,7 +95,7 @@
addEs [equalityE]) 1);
qed "tiling_domino_0_1";
-Goal "[| i: nat; n: nat |] ==> {i} * (n #+ n) : tiling(domino)";
+Goal "[| i \\<in> nat; n \\<in> nat |] ==> {i} * (n #+ n) \\<in> tiling(domino)";
by (induct_tac "n" 1);
by (simp_tac (simpset() addsimps tiling.intrs) 1);
by (asm_simp_tac (simpset() addsimps [Un_assoc RS sym, Sigma_succ2]) 1);
@@ -109,7 +109,7 @@
by (blast_tac (claset() addEs [mem_irrefl, mem_asym]) 1);
qed "dominoes_tile_row";
-Goal "[| m: nat; n: nat |] ==> m * (n #+ n) : tiling(domino)";
+Goal "[| m \\<in> nat; n \\<in> nat |] ==> m * (n #+ n) \\<in> tiling(domino)";
by (induct_tac "m" 1);
by (simp_tac (simpset() addsimps tiling.intrs) 1);
by (asm_simp_tac (simpset() addsimps [Sigma_succ1]) 1);
@@ -121,14 +121,14 @@
by Auto_tac;
qed "eq_lt_E";
-Goal "[| m: nat; n: nat; \
+Goal "[| m \\<in> nat; n \\<in> nat; \
\ t = (succ(m)#+succ(m))*(succ(n)#+succ(n)); \
\ t' = t - {<0,0>} - {<succ(m#+m), succ(n#+n)>} |] \
-\ ==> t' ~: tiling(domino)";
+\ ==> t' \\<notin> tiling(domino)";
by (rtac notI 1);
by (dtac tiling_domino_0_1 1);
by (eres_inst_tac [("x", "|?A|")] eq_lt_E 1);
-by (subgoal_tac "t : tiling(domino)" 1);
+by (subgoal_tac "t \\<in> tiling(domino)" 1);
(*Requires a small simpset that won't move the succ applications*)
by (asm_simp_tac (ZF_ss addsimps [nat_succI, add_type,
dominoes_tile_matrix]) 2);