src/HOL/Algebra/Left_Coset.thy
changeset 77089 b4f892d0625d
child 80914 d97fdabd9e2b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Left_Coset.thy	Wed Jan 25 13:37:44 2023 +0000
@@ -0,0 +1,137 @@
+theory Left_Coset
+imports Coset
+
+(*This instance of Coset.thy but for left cosets is due to Jonas Rädle and has been imported
+  from the AFP entry Orbit_Stabiliser. *)
+
+begin
+
+definition
+  LCOSETS  :: "[_, 'a set] \<Rightarrow> ('a set)set"   ("lcosets\<index> _" [81] 80)
+  where "lcosets\<^bsub>G\<^esub> H = (\<Union>a\<in>carrier G. {a <#\<^bsub>G\<^esub> H})"
+
+definition
+  LFactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" (infixl "LMod" 65)
+    \<comment> \<open>Actually defined for groups rather than monoids\<close>
+   where "LFactGroup G H = \<lparr>carrier = lcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>"
+
+lemma (in group) lcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> x <# H"
+  by (simp add: group_l_invI subgroup.lcos_module_rev subgroup.one_closed)
+
+text \<open>Elements of a left coset are in the carrier\<close>
+lemma (in subgroup) elemlcos_carrier:
+  assumes "group G" "a \<in> carrier G" "a' \<in> a <# H"
+  shows "a' \<in> carrier G"
+  by (meson assms group.l_coset_carrier subgroup_axioms)
+
+text \<open>Step one for lemma \<open>rcos_module\<close>\<close>
+lemma (in subgroup) lcos_module_imp:
+  assumes "group G"
+  assumes xcarr: "x \<in> carrier G"
+      and x'cos: "x' \<in> x <# H"
+  shows "(inv x \<otimes> x') \<in> H"
+proof -
+  interpret group G by fact
+  obtain h
+    where hH: "h \<in> H" and x': "x' = x \<otimes> h" and hcarr: "h \<in> carrier G"
+    using assms by (auto simp: l_coset_def)
+  have "(inv x) \<otimes> x' = (inv x) \<otimes> (x \<otimes> h)"
+    by (simp add: x')
+  have "\<dots> = (x \<otimes> inv x) \<otimes> h"
+    by (metis hcarr inv_closed inv_inv l_inv m_assoc xcarr)
+  also have "\<dots> = h"
+    by (simp add: hcarr xcarr)
+  finally have "(inv x) \<otimes> x' = h"
+    using x' by metis
+  then show "(inv x) \<otimes> x' \<in> H"
+    using hH by force
+qed
+
+text \<open>Left cosets are subsets of the carrier.\<close> 
+lemma (in subgroup) lcosets_carrier:
+  assumes "group G"
+  assumes XH: "X \<in> lcosets H"
+  shows "X \<subseteq> carrier G"
+proof -
+  interpret group G by fact
+  show "X \<subseteq> carrier G"
+    using XH l_coset_subset_G subset by (auto simp: LCOSETS_def)
+qed
+
+lemma (in group) lcosets_part_G:
+  assumes "subgroup H G"
+  shows "\<Union>(lcosets H) = carrier G"
+proof -
+  interpret subgroup H G by fact
+  show ?thesis
+  proof
+    show "\<Union> (lcosets H) \<subseteq> carrier G"
+      by (force simp add: LCOSETS_def l_coset_def)
+    show "carrier G \<subseteq> \<Union> (lcosets H)"
+      by (auto simp add: LCOSETS_def intro: lcos_self assms)
+  qed
+qed
+
+lemma (in group) lcosets_subset_PowG:
+     "subgroup H G  \<Longrightarrow> lcosets H \<subseteq> Pow(carrier G)"
+  using lcosets_part_G subset_Pow_Union by blast
+
+lemma (in group) lcos_disjoint:
+  assumes "subgroup H G"
+  assumes p: "a \<in> lcosets H" "b \<in> lcosets H" "a\<noteq>b"
+  shows "a \<inter> b = {}"
+proof -
+  interpret subgroup H G by fact
+  show ?thesis
+    using p l_repr_independence subgroup_axioms unfolding LCOSETS_def disjoint_iff
+    by blast
+qed
+
+text\<open>The next two lemmas support the proof of \<open>card_cosets_equal\<close>.\<close>
+lemma (in group) inj_on_f':
+    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (a <# H)"
+  by (simp add: inj_on_g l_coset_subset_G)
+
+lemma (in group) inj_on_f'':
+    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. inv a \<otimes> y) (a <# H)"
+  by (meson inj_on_cmult inv_closed l_coset_subset_G subset_inj_on)
+
+lemma (in group) inj_on_g':
+    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. a \<otimes> y) H"
+  using inj_on_cmult inj_on_subset by blast
+
+lemma (in group) l_card_cosets_equal:
+  assumes "c \<in> lcosets H" and H: "H \<subseteq> carrier G" and fin: "finite(carrier G)"
+  shows "card H = card c"
+proof -
+  obtain x where x: "x \<in> carrier G" and c: "c = x <# H"
+    using assms by (auto simp add: LCOSETS_def)
+  have "inj_on ((\<otimes>) x) H"
+    by (simp add: H group.inj_on_g' x)
+  moreover
+  have "(\<otimes>) x ` H \<subseteq> x <# H"
+    by (force simp add: m_assoc subsetD l_coset_def)
+  moreover
+  have "inj_on ((\<otimes>) (inv x)) (x <# H)"
+    by (simp add: H group.inj_on_f'' x)
+  moreover
+  have "\<And>h. h \<in> H \<Longrightarrow> inv x \<otimes> (x \<otimes> h) \<in> H"
+    by (metis H in_mono inv_solve_left m_closed x)
+  then have "(\<otimes>) (inv x) ` (x <# H) \<subseteq> H"
+    by (auto simp: l_coset_def)
+  ultimately show ?thesis
+    by (metis H fin c card_bij_eq finite_imageD finite_subset)
+qed
+
+theorem (in group) l_lagrange:
+  assumes "finite(carrier G)" "subgroup H G"
+  shows "card(lcosets H) * card(H) = order(G)"
+proof -
+  have "card H * card (lcosets H) = card (\<Union> (lcosets H))"
+    using card_partition
+    by (metis (no_types, lifting) assms finite_UnionD l_card_cosets_equal lcos_disjoint lcosets_part_G subgroup.subset)
+  then show ?thesis
+    by (simp add: assms(2) lcosets_part_G mult.commute order_def)
+qed
+
+end