src/ZF/ex/Primrec0.ML
changeset 13895 b6105462ccd3
parent 13894 8018173a7979
child 13896 717bd79b976f
--- a/src/ZF/ex/Primrec0.ML	Sat Apr 05 16:18:58 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,395 +0,0 @@
-(*  Title: 	ZF/ex/primrec
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-Primitive Recursive Functions
-
-Proof adopted from
-Nora Szasz, 
-A Machine Checked Proof that Ackermann's Function is not Primitive Recursive,
-In: Huet & Plotkin, eds., Logical Environments (CUP, 1993), 317-338.
-
-See also E. Mendelson, Introduction to Mathematical Logic.
-(Van Nostrand, 1964), page 250, exercise 11.
-*)
-
-open Primrec0;
-
-val pr0_typechecks = 
-    nat_typechecks @ List.intrs @ 
-    [lam_type, list_case_type, drop_type, map_type, apply_type, rec_type];
-
-(** Useful special cases of evaluation ***)
-
-val pr0_ss = arith_ss 
-    addsimps List.case_eqns
-    addsimps [list_rec_Nil, list_rec_Cons, 
-	      drop_0, drop_Nil, drop_succ_Cons,
-	      map_Nil, map_Cons]
-    setsolver (type_auto_tac pr0_typechecks);
-
-goalw Primrec0.thy [SC_def]
-    "!!x l. [| x:nat;  l: list(nat) |] ==> SC ` (Cons(x,l)) = succ(x)";
-by (asm_simp_tac pr0_ss 1);
-val SC = result();
-
-goalw Primrec0.thy [CONST_def]
-    "!!l. [| l: list(nat) |] ==> CONST(k) ` l = k";
-by (asm_simp_tac pr0_ss 1);
-val CONST = result();
-
-goalw Primrec0.thy [PROJ_def]
-    "!!l. [| x: nat;  l: list(nat) |] ==> PROJ(0) ` (Cons(x,l)) = x";
-by (asm_simp_tac pr0_ss 1);
-val PROJ_0 = result();
-
-goalw Primrec0.thy [COMP_def]
-    "!!l. [| l: list(nat) |] ==> COMP(g,[f]) ` l = g` [f`l]";
-by (asm_simp_tac pr0_ss 1);
-val COMP_1 = result();
-
-goalw Primrec0.thy [PREC_def]
-    "!!l. l: list(nat) ==> PREC(f,g) ` (Cons(0,l)) = f`l";
-by (asm_simp_tac pr0_ss 1);
-val PREC_0 = result();
-
-goalw Primrec0.thy [PREC_def]
-    "!!l. [| x:nat;  l: list(nat) |] ==>  \
-\         PREC(f,g) ` (Cons(succ(x),l)) = \
-\         g ` Cons(PREC(f,g)`(Cons(x,l)), Cons(x,l))";
-by (asm_simp_tac pr0_ss 1);
-val PREC_succ = result();
-
-(*** Inductive definition of the PR functions ***)
-
-structure Primrec = Inductive_Fun
- (val thy        = Primrec0.thy
-  val thy_name   = "Primrec"
-  val rec_doms   = [("primrec", "list(nat)->nat")]
-  val sintrs     = 
-      ["SC : primrec",
-       "k: nat ==> CONST(k) : primrec",
-       "i: nat ==> PROJ(i) : primrec",
-       "[| g: primrec; fs: list(primrec) |] ==> COMP(g,fs): primrec",
-       "[| f: primrec; g: primrec |] ==> PREC(f,g): primrec"]
-  val monos      = [list_mono]
-  val con_defs   = [SC_def,CONST_def,PROJ_def,COMP_def,PREC_def]
-  val type_intrs = pr0_typechecks
-  val type_elims = []);
-
-
-(* c: primrec ==> c: list(nat) -> nat *)
-val primrec_into_fun = Primrec.dom_subset RS subsetD;
-
-val pr_ss = pr0_ss 
-    setsolver (type_auto_tac ([primrec_into_fun] @ 
-			      pr0_typechecks @ Primrec.intrs));
-
-goalw Primrec.thy [ACK_def] "!!i. i:nat ==> ACK(i): primrec";
-by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac pr_ss));
-val ACK_in_primrec = result();
-
-val ack_typechecks =
-    [ACK_in_primrec, primrec_into_fun RS apply_type,
-     add_type, list_add_type, nat_into_Ord] @ 
-    nat_typechecks @ List.intrs @ Primrec.intrs;
-
-(*strict typechecking for the Ackermann proof; instantiates no vars*)
-fun tc_tac rls =
-    REPEAT
-      (SOMEGOAL (test_assume_tac ORELSE' match_tac (rls @ ack_typechecks)));
-
-goal Primrec.thy "!!i j. [| i:nat;  j:nat |] ==>  ack(i,j): nat";
-by (tc_tac []);
-val ack_type = result();
-
-(** Ackermann's function cases **)
-
-(*PROPERTY A 1*)
-goalw Primrec0.thy [ACK_def] "!!j. j:nat ==> ack(0,j) = succ(j)";
-by (asm_simp_tac (pr0_ss addsimps [SC]) 1);
-val ack_0 = result();
-
-(*PROPERTY A 2*)
-goalw Primrec0.thy [ACK_def] "ack(succ(i), 0) = ack(i,1)";
-by (asm_simp_tac (pr0_ss addsimps [CONST,PREC_0]) 1);
-val ack_succ_0 = result();
-
-(*PROPERTY A 3*)
-(*Could be proved in Primrec0, like the previous two cases, but using
-  primrec_into_fun makes type-checking easier!*)
-goalw Primrec.thy [ACK_def]
-    "!!i j. [| i:nat;  j:nat |] ==> \
-\           ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))";
-by (asm_simp_tac (pr_ss addsimps [CONST,PREC_succ,COMP_1,PROJ_0]) 1);
-val ack_succ_succ = result();
-
-val ack_ss = 
-    pr_ss addsimps [ack_0, ack_succ_0, ack_succ_succ, 
-		    ack_type, nat_into_Ord];
-
-(*PROPERTY A 4*)
-goal Primrec.thy "!!i. i:nat ==> ALL j:nat. j < ack(i,j)";
-by (etac nat_induct 1);
-by (asm_simp_tac ack_ss 1);
-by (rtac ballI 1);
-by (eres_inst_tac [("n","j")] nat_induct 1);
-by (DO_GOAL [rtac (nat_0I RS nat_0_le RS lt_trans),
-	     asm_simp_tac ack_ss] 1);
-by (DO_GOAL [etac (succ_leI RS lt_trans1),
-	     asm_simp_tac ack_ss] 1);
-val lt_ack2_lemma = result();
-val lt_ack2 = standard (lt_ack2_lemma RS bspec);
-
-(*PROPERTY A 5-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(i, succ(j))";
-by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [lt_ack2])));
-val ack_lt_ack_succ2 = result();
-
-(*PROPERTY A 5, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| j<k; i:nat; k:nat |] ==> ack(i,j) < ack(i,k)";
-by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
-by (etac succ_lt_induct 1);
-by (assume_tac 1);
-by (rtac lt_trans 2);
-by (REPEAT (ares_tac ([ack_lt_ack_succ2, ack_type] @ pr0_typechecks) 1));
-val ack_lt_mono2 = result();
-
-(*PROPERTY A 5', monotonicity for le *)
-goal Primrec.thy
-    "!!i j k. [| j le k;  i: nat;  k:nat |] ==> ack(i,j) le ack(i,k)";
-by (res_inst_tac [("f", "%j.ack(i,j)")] Ord_lt_mono_imp_le_mono 1);
-by (REPEAT (ares_tac [ack_lt_mono2, ack_type RS nat_into_Ord] 1));
-val ack_le_mono2 = result();
-
-(*PROPERTY A 6*)
-goal Primrec.thy
-    "!!i j. [| i:nat;  j:nat |] ==> ack(i, succ(j)) le ack(succ(i), j)";
-by (nat_ind_tac "j" [] 1);
-by (ALLGOALS (asm_simp_tac ack_ss));
-by (rtac ack_le_mono2 1);
-by (rtac (lt_ack2 RS succ_leI RS le_trans) 1);
-by (REPEAT (ares_tac (ack_typechecks) 1));
-val ack2_le_ack1 = result();
-
-(*PROPERTY A 7-, the single-step lemma*)
-goal Primrec.thy "!!i j. [| i:nat; j:nat |] ==> ack(i,j) < ack(succ(i),j)";
-by (rtac (ack_lt_mono2 RS lt_trans2) 1);
-by (rtac ack2_le_ack1 4);
-by (REPEAT (ares_tac ([nat_le_refl, ack_type] @ pr0_typechecks) 1));
-val ack_lt_ack_succ1 = result();
-
-(*PROPERTY A 7, monotonicity for < *)
-goal Primrec.thy "!!i j k. [| i<j; j:nat; k:nat |] ==> ack(i,k) < ack(j,k)";
-by (forward_tac [lt_nat_in_nat] 1 THEN assume_tac 1);
-by (etac succ_lt_induct 1);
-by (assume_tac 1);
-by (rtac lt_trans 2);
-by (REPEAT (ares_tac ([ack_lt_ack_succ1, ack_type] @ pr0_typechecks) 1));
-val ack_lt_mono1 = result();
-
-(*PROPERTY A 7', monotonicity for le *)
-goal Primrec.thy
-    "!!i j k. [| i le j; j:nat; k:nat |] ==> ack(i,k) le ack(j,k)";
-by (res_inst_tac [("f", "%j.ack(j,k)")] Ord_lt_mono_imp_le_mono 1);
-by (REPEAT (ares_tac [ack_lt_mono1, ack_type RS nat_into_Ord] 1));
-val ack_le_mono1 = result();
-
-(*PROPERTY A 8*)
-goal Primrec.thy "!!j. j:nat ==> ack(1,j) = succ(succ(j))";
-by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac ack_ss));
-val ack_1 = result();
-
-(*PROPERTY A 9*)
-goal Primrec.thy "!!j. j:nat ==> ack(succ(1),j) = succ(succ(succ(j#+j)))";
-by (etac nat_induct 1);
-by (ALLGOALS (asm_simp_tac (ack_ss addsimps [ack_1, add_succ_right])));
-val ack_2 = result();
-
-(*PROPERTY A 10*)
-goal Primrec.thy
-    "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
-\               ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)";
-by (rtac (ack2_le_ack1 RSN (2,lt_trans2)) 1);
-by (asm_simp_tac ack_ss 1);
-by (rtac (add_le_self RS ack_le_mono1 RS lt_trans1) 1);
-by (rtac (add_le_self2 RS ack_lt_mono1 RS ack_lt_mono2) 5);
-by (tc_tac []);
-val ack_nest_bound = result();
-
-(*PROPERTY A 11*)
-goal Primrec.thy
-    "!!i1 i2 j. [| i1:nat; i2:nat; j:nat |] ==> \
-\          ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)";
-by (res_inst_tac [("j", "ack(succ(1), ack(i1 #+ i2, j))")] lt_trans 1);
-by (asm_simp_tac (ack_ss addsimps [ack_2]) 1);
-by (rtac (ack_nest_bound RS lt_trans2) 2);
-by (asm_simp_tac ack_ss 5);
-by (rtac (add_le_mono RS leI RS leI) 1);
-by (REPEAT (ares_tac ([add_le_self, add_le_self2, ack_le_mono1] @
-                      ack_typechecks) 1));
-val ack_add_bound = result();
-
-(*PROPERTY A 12.  Article uses existential quantifier but the ALF proof
-  used k#+4.  Quantified version must be nested EX k'. ALL i,j... *)
-goal Primrec.thy
-    "!!i j k. [| i < ack(k,j);  j:nat;  k:nat |] ==> \
-\             i#+j < ack(succ(succ(succ(succ(k)))), j)";
-by (res_inst_tac [("j", "ack(k,j) #+ ack(0,j)")] lt_trans 1);
-by (rtac (ack_add_bound RS lt_trans2) 2);
-by (asm_simp_tac (ack_ss addsimps [add_0_right]) 5);
-by (REPEAT (ares_tac ([add_lt_mono, lt_ack2] @ ack_typechecks) 1));
-val ack_add_bound2 = result();
-
-(*** MAIN RESULT ***)
-
-val ack2_ss =
-    ack_ss addsimps [list_add_Nil, list_add_Cons, list_add_type, nat_into_Ord];
-
-goalw Primrec.thy [SC_def]
-    "!!l. l: list(nat) ==> SC ` l < ack(1, list_add(l))";
-by (etac List.elim 1);
-by (asm_simp_tac (ack2_ss addsimps [succ_iff]) 1);
-by (asm_simp_tac (ack2_ss addsimps [ack_1, add_le_self]) 1);
-val SC_case = result();
-
-(*PROPERTY A 4'? Extra lemma needed for CONST case, constant functions*)
-goal Primrec.thy "!!j. [| i:nat; j:nat |] ==> i < ack(i,j)";
-by (etac nat_induct 1);
-by (asm_simp_tac (ack_ss addsimps [nat_0_le]) 1);
-by (etac ([succ_leI, ack_lt_ack_succ1] MRS lt_trans1) 1);
-by (tc_tac []);
-val lt_ack1 = result();
-
-goalw Primrec.thy [CONST_def]
-    "!!l. [| l: list(nat);  k: nat |] ==> CONST(k) ` l < ack(k, list_add(l))";
-by (asm_simp_tac (ack2_ss addsimps [lt_ack1]) 1);
-val CONST_case = result();
-
-goalw Primrec.thy [PROJ_def]
-    "!!l. l: list(nat) ==> ALL i:nat. PROJ(i) ` l < ack(0, list_add(l))";
-by (asm_simp_tac ack2_ss 1);
-by (etac List.induct 1);
-by (asm_simp_tac (ack2_ss addsimps [nat_0_le]) 1);
-by (asm_simp_tac ack2_ss 1);
-by (rtac ballI 1);
-by (eres_inst_tac [("n","x")] natE 1);
-by (asm_simp_tac (ack2_ss addsimps [add_le_self]) 1);
-by (asm_simp_tac ack2_ss 1);
-by (etac (bspec RS lt_trans2) 1);
-by (rtac (add_le_self2 RS succ_leI) 2);
-by (tc_tac []);
-val PROJ_case_lemma = result();
-val PROJ_case = PROJ_case_lemma RS bspec;
-
-(** COMP case **)
-
-goal Primrec.thy
- "!!fs. fs : list({f: primrec .					\
-\              	   EX kf:nat. ALL l:list(nat). 			\
-\		    	      f`l < ack(kf, list_add(l))})	\
-\      ==> EX k:nat. ALL l: list(nat). 				\
-\                list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))";
-by (etac List.induct 1);
-by (DO_GOAL [res_inst_tac [("x","0")] bexI,
-	     asm_simp_tac (ack2_ss addsimps [lt_ack1, nat_0_le]),
-	     resolve_tac nat_typechecks] 1);
-by (safe_tac ZF_cs);
-by (asm_simp_tac ack2_ss 1);
-by (rtac (ballI RS bexI) 1);
-by (rtac (add_lt_mono RS lt_trans) 1);
-by (REPEAT (FIRSTGOAL (etac bspec)));
-by (rtac ack_add_bound 5);
-by (tc_tac []);
-val COMP_map_lemma = result();
-
-goalw Primrec.thy [COMP_def]
- "!!g. [| g: primrec;  kg: nat;					\
-\         ALL l:list(nat). g`l < ack(kg, list_add(l));		\
-\         fs : list({f: primrec .				\
-\                    EX kf:nat. ALL l:list(nat). 		\
-\		    	f`l < ack(kf, list_add(l))}) 		\
-\      |] ==> EX k:nat. ALL l: list(nat). COMP(g,fs)`l < ack(k, list_add(l))";
-by (asm_simp_tac ZF_ss 1);
-by (forward_tac [list_CollectD] 1);
-by (etac (COMP_map_lemma RS bexE) 1);
-by (rtac (ballI RS bexI) 1);
-by (etac (bspec RS lt_trans) 1);
-by (rtac lt_trans 2);
-by (rtac ack_nest_bound 3);
-by (etac (bspec RS ack_lt_mono2) 2);
-by (tc_tac [map_type]);
-val COMP_case = result();
-
-(** PREC case **)
-
-goalw Primrec.thy [PREC_def]
- "!!f g. [| ALL l:list(nat). f`l #+ list_add(l) < ack(kf, list_add(l));	\
-\           ALL l:list(nat). g`l #+ list_add(l) < ack(kg, list_add(l));	\
-\           f: primrec;  kf: nat;					\
-\           g: primrec;  kg: nat;					\
-\           l: list(nat)						\
-\        |] ==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))";
-by (etac List.elim 1);
-by (asm_simp_tac (ack2_ss addsimps [[nat_le_refl, lt_ack2] MRS lt_trans]) 1);
-by (asm_simp_tac ack2_ss 1);
-by (etac ssubst 1);  (*get rid of the needless assumption*)
-by (eres_inst_tac [("n","a")] nat_induct 1);
-(*base case*)
-by (DO_GOAL [asm_simp_tac ack2_ss, rtac lt_trans, etac bspec,
-	     assume_tac, rtac (add_le_self RS ack_lt_mono1),
-	     REPEAT o ares_tac (ack_typechecks)] 1);
-(*ind step*)
-by (asm_simp_tac (ack2_ss addsimps [add_succ_right]) 1);
-by (rtac (succ_leI RS lt_trans1) 1);
-by (res_inst_tac [("j", "g ` ?ll #+ ?mm")] lt_trans1 1);
-by (etac bspec 2);
-by (rtac (nat_le_refl RS add_le_mono) 1);
-by (tc_tac []);
-by (asm_simp_tac (ack2_ss addsimps [add_le_self2]) 1);
-(*final part of the simplification*)
-by (asm_simp_tac ack2_ss 1);
-by (rtac (add_le_self2 RS ack_le_mono1 RS lt_trans1) 1);
-by (etac ack_lt_mono2 5);
-by (tc_tac []);
-val PREC_case_lemma = result();
-
-goal Primrec.thy
- "!!f g. [| f: primrec;  kf: nat;				\
-\           g: primrec;  kg: nat;				\
-\           ALL l:list(nat). f`l < ack(kf, list_add(l));	\
-\           ALL l:list(nat). g`l < ack(kg, list_add(l)) 	\
-\        |] ==> EX k:nat. ALL l: list(nat). 			\
-\		    PREC(f,g)`l< ack(k, list_add(l))";
-by (rtac (ballI RS bexI) 1);
-by (rtac ([add_le_self, PREC_case_lemma] MRS lt_trans1) 1);
-by (REPEAT
-    (SOMEGOAL
-     (FIRST' [test_assume_tac,
-	      match_tac (ack_typechecks),
-	      rtac (ack_add_bound2 RS ballI) THEN' etac bspec])));
-val PREC_case = result();
-
-goal Primrec.thy
-    "!!f. f:primrec ==> EX k:nat. ALL l:list(nat). f`l < ack(k, list_add(l))";
-by (etac Primrec.induct 1);
-by (safe_tac ZF_cs);
-by (DEPTH_SOLVE
-    (ares_tac ([SC_case, CONST_case, PROJ_case, COMP_case, PREC_case,
-		       bexI, ballI] @ nat_typechecks) 1));
-val ack_bounds_primrec = result();
-
-goal Primrec.thy
-    "~ (lam l:list(nat). list_case(0, %x xs. ack(x,x), l)) : primrec";
-by (rtac notI 1);
-by (etac (ack_bounds_primrec RS bexE) 1);
-by (rtac lt_irrefl 1);
-by (dres_inst_tac [("x", "[x]")] bspec 1);
-by (asm_simp_tac ack2_ss 1);
-by (asm_full_simp_tac (ack2_ss addsimps [add_0_right]) 1);
-val ack_not_primrec = result();
-