--- a/src/ZF/ex/acc.ML Sat Apr 05 16:18:58 2003 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,64 +0,0 @@
-(* Title: ZF/ex/acc
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1993 University of Cambridge
-
-Inductive definition of acc(r)
-
-See Ch. Paulin-Mohring, Inductive Definitions in the System Coq.
-Research Report 92-49, LIP, ENS Lyon. Dec 1992.
-*)
-
-structure Acc = Inductive_Fun
- (val thy = WF.thy addconsts [(["acc"],"i=>i")]
- val rec_doms = [("acc", "field(r)")]
- val sintrs = ["[| r-``{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"]
- val monos = [Pow_mono]
- val con_defs = []
- val type_intrs = []
- val type_elims = []);
-
-goal Acc.thy "!!a b r. [| b: acc(r); <a,b>: r |] ==> a: acc(r)";
-by (etac Acc.elim 1);
-by (fast_tac ZF_cs 1);
-val acc_downward = result();
-
-val [major] = goal Acc.thy "field(r) <= acc(r) ==> wf(r)";
-by (rtac (major RS wfI2) 1);
-by (rtac subsetI 1);
-by (etac Acc.induct 1);
-by (etac (bspec RS mp) 1);
-by (resolve_tac Acc.intrs 1);
-by (assume_tac 2);
-by (ALLGOALS (fast_tac ZF_cs));
-val acc_wfI = result();
-
-goal ZF.thy "!!r A. field(r Int A*A) <= field(r) Int A";
-by (fast_tac ZF_cs 1);
-val field_Int_prodself = result();
-
-goal Acc.thy "wf(r Int (acc(r)*acc(r)))";
-by (rtac (field_Int_prodself RS wfI2) 1);
-by (rtac subsetI 1);
-by (etac IntE 1);
-by (etac Acc.induct 1);
-by (etac (bspec RS mp) 1);
-by (rtac IntI 1);
-by (assume_tac 1);
-by (resolve_tac Acc.intrs 1);
-by (assume_tac 2);
-by (ALLGOALS (fast_tac ZF_cs));
-val wf_acc_Int = result();
-
-val [major] = goal Acc.thy "wf(r) ==> field(r) <= acc(r)";
-by (rtac subsetI 1);
-by (etac (major RS wf_induct2) 1);
-by (rtac subset_refl 1);
-by (resolve_tac Acc.intrs 1);
-by (assume_tac 2);
-by (fast_tac ZF_cs 1);
-val acc_wfD = result();
-
-goal Acc.thy "wf(r) <-> field(r) <= acc(r)";
-by (EVERY1 [rtac iffI, etac acc_wfD, etac acc_wfI]);
-val wf_acc_iff = result();