--- a/src/ZF/ex/equiv.ML Sat Apr 05 16:18:58 2003 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,268 +0,0 @@
-(* Title: ZF/ex/equiv.ML
- ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1993 University of Cambridge
-
-For equiv.thy. Equivalence relations in Zermelo-Fraenkel Set Theory
-*)
-
-val RSLIST = curry (op MRS);
-
-open Equiv;
-
-(*** Suppes, Theorem 70: r is an equiv relation iff converse(r) O r = r ***)
-
-(** first half: equiv(A,r) ==> converse(r) O r = r **)
-
-goalw Equiv.thy [trans_def,sym_def]
- "!!r. [| sym(r); trans(r) |] ==> converse(r) O r <= r";
-by (fast_tac (ZF_cs addSEs [converseD,compE]) 1);
-val sym_trans_comp_subset = result();
-
-goalw Equiv.thy [refl_def]
- "!!A r. refl(A,r) ==> r <= converse(r) O r";
-by (fast_tac (ZF_cs addSIs [converseI] addIs [compI]) 1);
-val refl_comp_subset = result();
-
-goalw Equiv.thy [equiv_def]
- "!!A r. equiv(A,r) ==> converse(r) O r = r";
-by (rtac equalityI 1);
-by (REPEAT (ares_tac [sym_trans_comp_subset, refl_comp_subset] 1
- ORELSE etac conjE 1));
-val equiv_comp_eq = result();
-
-(*second half*)
-goalw Equiv.thy [equiv_def,refl_def,sym_def,trans_def]
- "!!A r. [| converse(r) O r = r; domain(r) = A |] ==> equiv(A,r)";
-by (etac equalityE 1);
-by (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r" 1);
-by (safe_tac ZF_cs);
-by (fast_tac (ZF_cs addSIs [converseI] addIs [compI]) 3);
-by (ALLGOALS (fast_tac
- (ZF_cs addSIs [converseI] addIs [compI] addSEs [compE])));
-by flexflex_tac;
-val comp_equivI = result();
-
-(** Equivalence classes **)
-
-(*Lemma for the next result*)
-goalw Equiv.thy [equiv_def,trans_def,sym_def]
- "!!A r. [| equiv(A,r); <a,b>: r |] ==> r``{a} <= r``{b}";
-by (fast_tac ZF_cs 1);
-val equiv_class_subset = result();
-
-goal Equiv.thy "!!A r. [| equiv(A,r); <a,b>: r |] ==> r``{a} = r``{b}";
-by (REPEAT (ares_tac [equalityI, equiv_class_subset] 1));
-by (rewrite_goals_tac [equiv_def,sym_def]);
-by (fast_tac ZF_cs 1);
-val equiv_class_eq = result();
-
-val prems = goalw Equiv.thy [equiv_def,refl_def]
- "[| equiv(A,r); a: A |] ==> a: r``{a}";
-by (cut_facts_tac prems 1);
-by (fast_tac ZF_cs 1);
-val equiv_class_self = result();
-
-(*Lemma for the next result*)
-goalw Equiv.thy [equiv_def,refl_def]
- "!!A r. [| equiv(A,r); r``{b} <= r``{a}; b: A |] ==> <a,b>: r";
-by (fast_tac ZF_cs 1);
-val subset_equiv_class = result();
-
-val prems = goal Equiv.thy
- "[| r``{a} = r``{b}; equiv(A,r); b: A |] ==> <a,b>: r";
-by (REPEAT (resolve_tac (prems @ [equalityD2, subset_equiv_class]) 1));
-val eq_equiv_class = result();
-
-(*thus r``{a} = r``{b} as well*)
-goalw Equiv.thy [equiv_def,trans_def,sym_def]
- "!!A r. [| equiv(A,r); x: (r``{a} Int r``{b}) |] ==> <a,b>: r";
-by (fast_tac ZF_cs 1);
-val equiv_class_nondisjoint = result();
-
-val [major] = goalw Equiv.thy [equiv_def,refl_def]
- "equiv(A,r) ==> r <= A*A";
-by (rtac (major RS conjunct1 RS conjunct1) 1);
-val equiv_type = result();
-
-goal Equiv.thy
- "!!A r. equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A";
-by (fast_tac (ZF_cs addIs [eq_equiv_class, equiv_class_eq]
- addDs [equiv_type]) 1);
-val equiv_class_eq_iff = result();
-
-goal Equiv.thy
- "!!A r. [| equiv(A,r); x: A; y: A |] ==> r``{x} = r``{y} <-> <x,y>: r";
-by (fast_tac (ZF_cs addIs [eq_equiv_class, equiv_class_eq]
- addDs [equiv_type]) 1);
-val eq_equiv_class_iff = result();
-
-(*** Quotients ***)
-
-(** Introduction/elimination rules -- needed? **)
-
-val prems = goalw Equiv.thy [quotient_def] "x:A ==> r``{x}: A/r";
-by (rtac RepFunI 1);
-by (resolve_tac prems 1);
-val quotientI = result();
-
-val major::prems = goalw Equiv.thy [quotient_def]
- "[| X: A/r; !!x. [| X = r``{x}; x:A |] ==> P |] \
-\ ==> P";
-by (rtac (major RS RepFunE) 1);
-by (eresolve_tac prems 1);
-by (assume_tac 1);
-val quotientE = result();
-
-goalw Equiv.thy [equiv_def,refl_def,quotient_def]
- "!!A r. equiv(A,r) ==> Union(A/r) = A";
-by (fast_tac eq_cs 1);
-val Union_quotient = result();
-
-goalw Equiv.thy [quotient_def]
- "!!A r. [| equiv(A,r); X: A/r; Y: A/r |] ==> X=Y | (X Int Y <= 0)";
-by (safe_tac (ZF_cs addSIs [equiv_class_eq]));
-by (assume_tac 1);
-by (rewrite_goals_tac [equiv_def,trans_def,sym_def]);
-by (fast_tac ZF_cs 1);
-val quotient_disj = result();
-
-(**** Defining unary operations upon equivalence classes ****)
-
-(** These proofs really require as local premises
- equiv(A,r); congruent(r,b)
-**)
-
-(*Conversion rule*)
-val prems as [equivA,bcong,_] = goal Equiv.thy
- "[| equiv(A,r); congruent(r,b); a: A |] ==> (UN x:r``{a}. b(x)) = b(a)";
-by (cut_facts_tac prems 1);
-by (rtac UN_singleton 1);
-by (etac equiv_class_self 1);
-by (assume_tac 1);
-by (rewrite_goals_tac [equiv_def,sym_def,congruent_def]);
-by (fast_tac ZF_cs 1);
-val UN_equiv_class = result();
-
-(*Resolve th against the "local" premises*)
-val localize = RSLIST [equivA,bcong];
-
-(*type checking of UN x:r``{a}. b(x) *)
-val _::_::prems = goalw Equiv.thy [quotient_def]
- "[| equiv(A,r); congruent(r,b); X: A/r; \
-\ !!x. x : A ==> b(x) : B |] \
-\ ==> (UN x:X. b(x)) : B";
-by (cut_facts_tac prems 1);
-by (safe_tac ZF_cs);
-by (rtac (localize UN_equiv_class RS ssubst) 1);
-by (REPEAT (ares_tac prems 1));
-val UN_equiv_class_type = result();
-
-(*Sufficient conditions for injectiveness. Could weaken premises!
- major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
-*)
-val _::_::prems = goalw Equiv.thy [quotient_def]
- "[| equiv(A,r); congruent(r,b); \
-\ (UN x:X. b(x))=(UN y:Y. b(y)); X: A/r; Y: A/r; \
-\ !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |] \
-\ ==> X=Y";
-by (cut_facts_tac prems 1);
-by (safe_tac ZF_cs);
-by (rtac (equivA RS equiv_class_eq) 1);
-by (REPEAT (ares_tac prems 1));
-by (etac box_equals 1);
-by (REPEAT (ares_tac [localize UN_equiv_class] 1));
-val UN_equiv_class_inject = result();
-
-
-(**** Defining binary operations upon equivalence classes ****)
-
-
-goalw Equiv.thy [congruent_def,congruent2_def,equiv_def,refl_def]
- "!!A r. [| equiv(A,r); congruent2(r,b); a: A |] ==> congruent(r,b(a))";
-by (fast_tac ZF_cs 1);
-val congruent2_implies_congruent = result();
-
-val equivA::prems = goalw Equiv.thy [congruent_def]
- "[| equiv(A,r); congruent2(r,b); a: A |] ==> \
-\ congruent(r, %x1. UN x2:r``{a}. b(x1,x2))";
-by (cut_facts_tac (equivA::prems) 1);
-by (safe_tac ZF_cs);
-by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1);
-by (assume_tac 1);
-by (asm_simp_tac (ZF_ss addsimps [equivA RS UN_equiv_class,
- congruent2_implies_congruent]) 1);
-by (rewrite_goals_tac [congruent2_def,equiv_def,refl_def]);
-by (fast_tac ZF_cs 1);
-val congruent2_implies_congruent_UN = result();
-
-val prems as equivA::_ = goal Equiv.thy
- "[| equiv(A,r); congruent2(r,b); a1: A; a2: A |] \
-\ ==> (UN x1:r``{a1}. UN x2:r``{a2}. b(x1,x2)) = b(a1,a2)";
-by (cut_facts_tac prems 1);
-by (asm_simp_tac (ZF_ss addsimps [equivA RS UN_equiv_class,
- congruent2_implies_congruent,
- congruent2_implies_congruent_UN]) 1);
-val UN_equiv_class2 = result();
-
-(*type checking*)
-val prems = goalw Equiv.thy [quotient_def]
- "[| equiv(A,r); congruent2(r,b); \
-\ X1: A/r; X2: A/r; \
-\ !!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) : B |] \
-\ ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B";
-by (cut_facts_tac prems 1);
-by (safe_tac ZF_cs);
-by (REPEAT (ares_tac (prems@[UN_equiv_class_type,
- congruent2_implies_congruent_UN,
- congruent2_implies_congruent, quotientI]) 1));
-val UN_equiv_class_type2 = result();
-
-
-(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
- than the direct proof*)
-val prems = goalw Equiv.thy [congruent2_def,equiv_def,refl_def]
- "[| equiv(A,r); \
-\ !! y z w. [| w: A; <y,z> : r |] ==> b(y,w) = b(z,w); \
-\ !! y z w. [| w: A; <y,z> : r |] ==> b(w,y) = b(w,z) \
-\ |] ==> congruent2(r,b)";
-by (cut_facts_tac prems 1);
-by (safe_tac ZF_cs);
-by (rtac trans 1);
-by (REPEAT (ares_tac prems 1
- ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1));
-val congruent2I = result();
-
-val [equivA,commute,congt] = goal Equiv.thy
- "[| equiv(A,r); \
-\ !! y z. [| y: A; z: A |] ==> b(y,z) = b(z,y); \
-\ !! y z w. [| w: A; <y,z>: r |] ==> b(w,y) = b(w,z) \
-\ |] ==> congruent2(r,b)";
-by (resolve_tac [equivA RS congruent2I] 1);
-by (rtac (commute RS trans) 1);
-by (rtac (commute RS trans RS sym) 3);
-by (rtac sym 5);
-by (REPEAT (ares_tac [congt] 1
- ORELSE etac (equivA RS equiv_type RS subsetD RS SigmaE2) 1));
-val congruent2_commuteI = result();
-
-(***OBSOLETE VERSION
-(*Rules congruentI and congruentD would simplify use of rewriting below*)
-val [equivA,ZinA,congt,commute] = goalw Equiv.thy [quotient_def]
- "[| equiv(A,r); Z: A/r; \
-\ !!w. [| w: A |] ==> congruent(r, %z.b(w,z)); \
-\ !!x y. [| x: A; y: A |] ==> b(y,x) = b(x,y) \
-\ |] ==> congruent(r, %w. UN z: Z. b(w,z))";
-val congt' = rewrite_rule [congruent_def] congt;
-by (cut_facts_tac [ZinA,congt] 1);
-by (rewtac congruent_def);
-by (safe_tac ZF_cs);
-by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1);
-by (assume_tac 1);
-by (asm_simp_tac (ZF_ss addsimps [congt RS (equivA RS UN_equiv_class)]) 1);
-by (rtac (commute RS trans) 1);
-by (rtac (commute RS trans RS sym) 3);
-by (rtac sym 5);
-by (REPEAT (ares_tac [congt' RS spec RS spec RS mp] 1));
-val congruent_commuteI = result();
-***)