src/ZF/inductive.ML
changeset 13895 b6105462ccd3
parent 13894 8018173a7979
child 13896 717bd79b976f
--- a/src/ZF/inductive.ML	Sat Apr 05 16:18:58 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,228 +0,0 @@
-(*  Title: 	ZF/inductive.ML
-    ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-(Co)Inductive Definitions for Zermelo-Fraenkel Set Theory
-
-Inductive definitions use least fixedpoints with standard products and sums
-Coinductive definitions use greatest fixedpoints with Quine products and sums
-
-Sums are used only for mutual recursion;
-Products are used only to derive "streamlined" induction rules for relations
-*)
-
-local open Ind_Syntax
-in
-structure Lfp =
-  struct
-  val oper	= Const("lfp",      [iT,iT-->iT]--->iT)
-  val bnd_mono	= Const("bnd_mono", [iT,iT-->iT]--->oT)
-  val bnd_monoI	= bnd_monoI
-  val subs	= def_lfp_subset
-  val Tarski	= def_lfp_Tarski
-  val induct	= def_induct
-  end;
-
-structure Standard_Prod =
-  struct
-  val sigma	= Const("Sigma", [iT, iT-->iT]--->iT)
-  val pair	= Const("Pair", [iT,iT]--->iT)
-  val split_const	= Const("split", [[iT,iT]--->iT, iT]--->iT)
-  val fsplit_const	= Const("fsplit", [[iT,iT]--->oT, iT]--->oT)
-  val pair_iff	= Pair_iff
-  val split_eq	= split
-  val fsplitI	= fsplitI
-  val fsplitD	= fsplitD
-  val fsplitE	= fsplitE
-  end;
-
-structure Standard_Sum =
-  struct
-  val sum	= Const("op +", [iT,iT]--->iT)
-  val inl	= Const("Inl", iT-->iT)
-  val inr	= Const("Inr", iT-->iT)
-  val elim	= Const("case", [iT-->iT, iT-->iT, iT]--->iT)
-  val case_inl	= case_Inl
-  val case_inr	= case_Inr
-  val inl_iff	= Inl_iff
-  val inr_iff	= Inr_iff
-  val distinct	= Inl_Inr_iff
-  val distinct' = Inr_Inl_iff
-  end;
-end;
-
-functor Ind_section_Fun (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
-  : sig include INTR_ELIM INDRULE end =
-struct
-structure Intr_elim = 
-    Intr_elim_Fun(structure Inductive=Inductive and Fp=Lfp and 
-		  Pr=Standard_Prod and Su=Standard_Sum);
-
-structure Indrule = Indrule_Fun (structure Inductive=Inductive and 
-		                 Pr=Standard_Prod and Intr_elim=Intr_elim);
-
-open Intr_elim Indrule
-end;
-
-
-structure Ind = Add_inductive_def_Fun
-    (structure Fp=Lfp and Pr=Standard_Prod and Su=Standard_Sum);
-
-
-signature INDUCTIVE_STRING =
-  sig
-  val thy_name   : string 		(*name of the new theory*)
-  val rec_doms   : (string*string) list	(*recursion terms and their domains*)
-  val sintrs     : string list		(*desired introduction rules*)
-  end;
-
-
-(*For upwards compatibility: can be called directly from ML*)
-functor Inductive_Fun
- (Inductive: sig include INDUCTIVE_STRING INDUCTIVE_ARG end)
-   : sig include INTR_ELIM INDRULE end =
-Ind_section_Fun
-   (open Inductive Ind_Syntax
-    val sign = sign_of thy;
-    val rec_tms = map (readtm sign iT o #1) rec_doms
-    and domts   = map (readtm sign iT o #2) rec_doms
-    and intr_tms = map (readtm sign propT) sintrs;
-    val thy = thy |> Ind.add_fp_def_i(rec_tms, domts, intr_tms) 
-                  |> add_thyname thy_name);
-
-
-
-local open Ind_Syntax
-in
-structure Gfp =
-  struct
-  val oper	= Const("gfp",      [iT,iT-->iT]--->iT)
-  val bnd_mono	= Const("bnd_mono", [iT,iT-->iT]--->oT)
-  val bnd_monoI	= bnd_monoI
-  val subs	= def_gfp_subset
-  val Tarski	= def_gfp_Tarski
-  val induct	= def_Collect_coinduct
-  end;
-
-structure Quine_Prod =
-  struct
-  val sigma	= Const("QSigma", [iT, iT-->iT]--->iT)
-  val pair	= Const("QPair", [iT,iT]--->iT)
-  val split_const	= Const("qsplit", [[iT,iT]--->iT, iT]--->iT)
-  val fsplit_const	= Const("qfsplit", [[iT,iT]--->oT, iT]--->oT)
-  val pair_iff	= QPair_iff
-  val split_eq	= qsplit
-  val fsplitI	= qfsplitI
-  val fsplitD	= qfsplitD
-  val fsplitE	= qfsplitE
-  end;
-
-structure Quine_Sum =
-  struct
-  val sum	= Const("op <+>", [iT,iT]--->iT)
-  val inl	= Const("QInl", iT-->iT)
-  val inr	= Const("QInr", iT-->iT)
-  val elim	= Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
-  val case_inl	= qcase_QInl
-  val case_inr	= qcase_QInr
-  val inl_iff	= QInl_iff
-  val inr_iff	= QInr_iff
-  val distinct	= QInl_QInr_iff
-  val distinct' = QInr_QInl_iff
-  end;
-end;
-
-
-signature COINDRULE =
-  sig
-  val coinduct : thm
-  end;
-
-
-functor CoInd_section_Fun
- (Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end) 
-    : sig include INTR_ELIM COINDRULE end =
-struct
-structure Intr_elim = 
-    Intr_elim_Fun(structure Inductive=Inductive and Fp=Gfp and 
-		  Pr=Quine_Prod and Su=Quine_Sum);
-
-open Intr_elim 
-val coinduct = raw_induct
-end;
-
-
-structure CoInd = 
-    Add_inductive_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and Su=Quine_Sum);
-
-
-(*For upwards compatibility: can be called directly from ML*)
-functor CoInductive_Fun
- (Inductive: sig include INDUCTIVE_STRING INDUCTIVE_ARG end)
-   : sig include INTR_ELIM COINDRULE end =
-CoInd_section_Fun
-   (open Inductive Ind_Syntax
-    val sign = sign_of thy;
-    val rec_tms = map (readtm sign iT o #1) rec_doms
-    and domts   = map (readtm sign iT o #2) rec_doms
-    and intr_tms = map (readtm sign propT) sintrs;
-    val thy = thy |> CoInd.add_fp_def_i(rec_tms, domts, intr_tms) 
-                  |> add_thyname thy_name);
-
-
-
-(*For installing the theory section.   co is either "" or "Co"*)
-fun inductive_decl co =
-  let open ThyParse Ind_Syntax
-      fun mk_intr_name (s,_) =  (*the "op" cancels any infix status*)
-	  if Syntax.is_identifier s then "op " ^ s  else "_"
-      fun mk_params (((((domains: (string*string) list, ipairs), 
-			monos), con_defs), type_intrs), type_elims) =
-        let val big_rec_name = space_implode "_" 
-		             (map (scan_to_id o trim o #1) domains)
-	    and srec_tms = mk_list (map #1 domains)
-            and sdoms    = mk_list (map #2 domains)
-	    and sintrs   = mk_big_list (map snd ipairs)
-            val stri_name = big_rec_name ^ "_Intrnl"
-        in
-	   (";\n\n\
-            \structure " ^ stri_name ^ " =\n\
-            \ let open Ind_Syntax in\n\
-            \  struct\n\
-            \  val rec_tms\t= map (readtm (sign_of thy) iT) "
-	                     ^ srec_tms ^ "\n\
-            \  and domts\t= map (readtm (sign_of thy) iT) "
-	                     ^ sdoms ^ "\n\
-            \  and intr_tms\t= map (readtm (sign_of thy) propT)\n"
-	                     ^ sintrs ^ "\n\
-            \  end\n\
-            \ end;\n\n\
-            \val thy = thy |> " ^ co ^ "Ind.add_fp_def_i \n    (" ^ 
-	       stri_name ^ ".rec_tms, " ^
-               stri_name ^ ".domts, " ^
-               stri_name ^ ".intr_tms)"
-           ,
-	    "structure " ^ big_rec_name ^ " =\n\
-            \  struct\n\
-            \  val _ = writeln \"" ^ co ^ 
-	               "Inductive definition " ^ big_rec_name ^ "\"\n\
-            \  structure Result = " ^ co ^ "Ind_section_Fun\n\
-            \  (open " ^ stri_name ^ "\n\
-            \   val thy\t\t= thy\n\
-            \   val monos\t\t= " ^ monos ^ "\n\
-            \   val con_defs\t\t= " ^ con_defs ^ "\n\
-            \   val type_intrs\t= " ^ type_intrs ^ "\n\
-            \   val type_elims\t= " ^ type_elims ^ ");\n\n\
-            \  val " ^ mk_list (map mk_intr_name ipairs) ^ " = Result.intrs;\n\
-            \  open Result\n\
-            \  end\n"
-	   )
-	end
-      val domains = "domains" $$-- repeat1 (string --$$ "<=" -- !! string)
-      val ipairs  = "intrs"   $$-- repeat1 (ident -- !! string)
-      fun optstring s = optional (s $$-- string) "\"[]\"" >> trim
-  in domains -- ipairs -- optstring "monos" -- optstring "con_defs"
-             -- optstring "type_intrs" -- optstring "type_elims"
-     >> mk_params
-  end;