--- a/src/HOL/Finite_Set.thy Tue Jul 10 17:30:43 2007 +0200
+++ b/src/HOL/Finite_Set.thy Tue Jul 10 17:30:45 2007 +0200
@@ -7,7 +7,7 @@
header {* Finite sets *}
theory Finite_Set
-imports Divides
+imports Divides Equiv_Relations IntDef
begin
subsection {* Definition and basic properties *}
@@ -2272,6 +2272,92 @@
apply(simp add: neq_commute less_le)
done
+
+subsection {* Finiteness and quotients *}
+
+text {*Suggested by Florian Kammüller*}
+
+lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
+ -- {* recall @{thm equiv_type} *}
+ apply (rule finite_subset)
+ apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
+ apply (unfold quotient_def)
+ apply blast
+ done
+
+lemma finite_equiv_class:
+ "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"
+ apply (unfold quotient_def)
+ apply (rule finite_subset)
+ prefer 2 apply assumption
+ apply blast
+ done
+
+lemma equiv_imp_dvd_card:
+ "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X
+ ==> k dvd card A"
+ apply (rule Union_quotient [THEN subst])
+ apply assumption
+ apply (rule dvd_partition)
+ prefer 3 apply (blast dest: quotient_disj)
+ apply (simp_all add: Union_quotient equiv_type)
+ done
+
+lemma card_quotient_disjoint:
+ "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
+apply(simp add:quotient_def)
+apply(subst card_UN_disjoint)
+ apply assumption
+ apply simp
+ apply(fastsimp simp add:inj_on_def)
+apply (simp add:setsum_constant)
+done
+
+
+subsection {* @{term setsum} and @{term setprod} on integers *}
+
+text {*By Jeremy Avigad*}
+
+lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
+ apply (cases "finite A")
+ apply (erule finite_induct, auto)
+ done
+
+lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
+ apply (cases "finite A")
+ apply (erule finite_induct, auto)
+ done
+
+lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
+ apply (cases "finite A")
+ apply (erule finite_induct, auto simp add: of_nat_mult)
+ done
+
+lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
+ apply (cases "finite A")
+ apply (erule finite_induct, auto)
+ done
+
+lemma setprod_nonzero_nat:
+ "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::nat)) ==> setprod f A \<noteq> 0"
+ by (rule setprod_nonzero, auto)
+
+lemma setprod_zero_eq_nat:
+ "finite A ==> (setprod f A = (0::nat)) = (\<exists>x \<in> A. f x = 0)"
+ by (rule setprod_zero_eq, auto)
+
+lemma setprod_nonzero_int:
+ "finite A ==> (\<forall>x \<in> A. f x \<noteq> (0::int)) ==> setprod f A \<noteq> 0"
+ by (rule setprod_nonzero, auto)
+
+lemma setprod_zero_eq_int:
+ "finite A ==> (setprod f A = (0::int)) = (\<exists>x \<in> A. f x = 0)"
+ by (rule setprod_zero_eq, auto)
+
+lemmas int_setsum = of_nat_setsum [where 'a=int]
+lemmas int_setprod = of_nat_setprod [where 'a=int]
+
+
locale Lattice = lattice -- {* we do not pollute the @{text lattice} clas *}
begin