src/HOL/Library/Zorn.thy
changeset 13551 b7f64ee8da84
child 13652 172600c40793
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Zorn.thy	Sat Aug 31 14:03:49 2002 +0200
@@ -0,0 +1,263 @@
+(*  Title       \<in> Zorn.thy
+    ID          \<in> $Id$
+    Author      \<in> Jacques D. Fleuriot
+    Copyright   \<in> 1998  University of Cambridge
+    Description \<in> Zorn's Lemma -- See Larry Paulson's Zorn.thy in ZF
+*) 
+
+header {*Zorn's Lemma*}
+
+theory Zorn = Main:
+
+text{*The lemma and section numbers refer to an unpublished article ``Towards
+the Mechanization of the Proofs of Some Classical Theorems of Set Theory,'' by
+Abrial and Laffitte.  *}
+
+constdefs
+  chain     ::  "'a::ord set => 'a set set"
+    "chain S  == {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}" 
+
+  super     ::  "['a::ord set,'a set] => 'a set set"
+    "super S c == {d. d \<in> chain(S) & c < d}"
+
+  maxchain  ::  "'a::ord set => 'a set set"
+    "maxchain S == {c. c \<in> chain S & super S c = {}}"
+
+  succ      ::  "['a::ord set,'a set] => 'a set"
+    "succ S c == if (c \<notin> chain S| c \<in> maxchain S) 
+                 then c else (@c'. c': (super S c))" 
+
+consts 
+  "TFin" ::  "'a::ord set => 'a set set"
+
+inductive "TFin(S)"
+  intros
+    succI:        "x \<in> TFin S ==> succ S x \<in> TFin S"
+    Pow_UnionI:   "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
+           
+  monos          Pow_mono
+
+
+subsection{*Mathematical Preamble*}
+
+lemma Union_lemma0: "(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C)<=A | B \<subseteq> Union(C)"
+by blast
+
+
+text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
+lemma Abrial_axiom1: "x \<subseteq> succ S x"
+apply (unfold succ_def)
+apply (rule split_if [THEN iffD2])
+apply (auto simp add: super_def maxchain_def psubset_def)
+apply (rule swap, assumption)
+apply (rule someI2, blast+)
+done
+
+lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
+
+lemma TFin_induct: 
+          "[| n \<in> TFin S;  
+             !!x. [| x \<in> TFin S; P(x) |] ==> P(succ S x);  
+             !!Y. [| Y \<subseteq> TFin S; Ball Y P |] ==> P(Union Y) |]  
+          ==> P(n)"
+apply (erule TFin.induct, blast+)
+done
+
+lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
+apply (erule subset_trans) 
+apply (rule Abrial_axiom1) 
+done
+
+text{*Lemma 1 of section 3.1*}
+lemma TFin_linear_lemma1:
+     "[| n \<in> TFin S;  m \<in> TFin S;   
+         \<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m  
+      |] ==> n \<subseteq> m | succ S m \<subseteq> n"
+apply (erule TFin_induct)
+apply (erule_tac [2] Union_lemma0) txt{*or just Blast_tac*}
+apply (blast del: subsetI intro: succ_trans)
+done
+
+text{* Lemma 2 of section 3.2 *}
+lemma TFin_linear_lemma2:
+     "m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
+apply (erule TFin_induct)
+apply (rule impI [THEN ballI])
+txt{*case split using TFin_linear_lemma1*}
+apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
+       assumption+)
+apply (drule_tac x = n in bspec, assumption)
+apply (blast del: subsetI intro: succ_trans, blast) 
+txt{*second induction step*}
+apply (rule impI [THEN ballI])
+apply (rule Union_lemma0 [THEN disjE])
+apply (rule_tac [3] disjI2)
+ prefer 2 apply blast 
+apply (rule ballI)
+apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
+       assumption+, auto) 
+apply (blast intro!: Abrial_axiom1 [THEN subsetD])  
+done
+
+text{*Re-ordering the premises of Lemma 2*}
+lemma TFin_subsetD:
+     "[| n \<subseteq> m;  m \<in> TFin S;  n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
+apply (rule TFin_linear_lemma2 [rule_format])
+apply (assumption+)
+done
+
+text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
+lemma TFin_subset_linear: "[| m \<in> TFin S;  n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
+apply (rule disjE) 
+apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
+apply (assumption+, erule disjI2)
+apply (blast del: subsetI 
+             intro: subsetI Abrial_axiom1 [THEN subset_trans])
+done
+
+text{*Lemma 3 of section 3.3*}
+lemma eq_succ_upper: "[| n \<in> TFin S;  m \<in> TFin S;  m = succ S m |] ==> n \<subseteq> m"
+apply (erule TFin_induct)
+apply (drule TFin_subsetD)
+apply (assumption+, force, blast)
+done
+
+text{*Property 3.3 of section 3.3*}
+lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
+apply (rule iffI)
+apply (rule Union_upper [THEN equalityI])
+apply (rule_tac [2] eq_succ_upper [THEN Union_least])
+apply (assumption+)
+apply (erule ssubst)
+apply (rule Abrial_axiom1 [THEN equalityI])
+apply (blast del: subsetI
+	     intro: subsetI TFin_UnionI TFin.succI)
+done
+
+subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
+
+text{*NB: We assume the partial ordering is @{text "\<subseteq>"}, 
+ the subset relation!*}
+
+lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
+by (unfold chain_def, auto)
+
+lemma super_subset_chain: "super S c \<subseteq> chain S"
+by (unfold super_def, fast)
+
+lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
+by (unfold maxchain_def, fast)
+
+lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> ? d. d \<in> super S c"
+by (unfold super_def maxchain_def, auto)
+
+lemma select_super: "c \<in> chain S - maxchain S ==>  
+                          (@c'. c': super S c): super S c"
+apply (erule mem_super_Ex [THEN exE])
+apply (rule someI2, auto)
+done
+
+lemma select_not_equals: "c \<in> chain S - maxchain S ==>  
+                          (@c'. c': super S c) \<noteq> c"
+apply (rule notI)
+apply (drule select_super)
+apply (simp add: super_def psubset_def)
+done
+
+lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (@c'. c': super S c)"
+apply (unfold succ_def)
+apply (fast intro!: if_not_P)
+done
+
+lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
+apply (frule succI3)
+apply (simp (no_asm_simp))
+apply (rule select_not_equals, assumption)
+done
+
+lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
+apply (erule TFin_induct)
+apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
+apply (unfold chain_def)
+apply (rule CollectI, safe)
+apply (drule bspec, assumption)
+apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE], 
+       blast+)
+done
+ 
+theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
+apply (rule_tac x = "Union (TFin S) " in exI)
+apply (rule classical)
+apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
+ prefer 2
+ apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric]) 
+apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
+apply (drule DiffI [THEN succ_not_equals], blast+)
+done
+
+
+subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then 
+                               There Is  a Maximal Element*}
+
+lemma chain_extend: 
+    "[| c \<in> chain S; z \<in> S;  
+        \<forall>x \<in> c. x<=(z:: 'a set) |] ==> {z} Un c \<in> chain S"
+by (unfold chain_def, blast)
+
+lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
+by (unfold chain_def, auto)
+
+lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
+by (unfold chain_def, auto)
+
+lemma maxchain_Zorn:
+     "[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
+apply (rule ccontr)
+apply (simp add: maxchain_def)
+apply (erule conjE)
+apply (subgoal_tac " ({u} Un c) \<in> super S c")
+apply simp
+apply (unfold super_def psubset_def)
+apply (blast intro: chain_extend dest: chain_Union_upper)
+done
+
+theorem Zorn_Lemma:
+     "\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
+apply (cut_tac Hausdorff maxchain_subset_chain)
+apply (erule exE)
+apply (drule subsetD, assumption)
+apply (drule bspec, assumption)
+apply (rule_tac x = "Union (c) " in bexI)
+apply (rule ballI, rule impI)
+apply (blast dest!: maxchain_Zorn, assumption)
+done
+
+subsection{*Alternative version of Zorn's Lemma*}
+
+lemma Zorn_Lemma2:
+     "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
+      ==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
+apply (cut_tac Hausdorff maxchain_subset_chain)
+apply (erule exE) 
+apply (drule subsetD, assumption) 
+apply (drule bspec, assumption, erule bexE) 
+apply (rule_tac x = y in bexI)
+ prefer 2 apply assumption
+apply clarify 
+apply (rule ccontr) 
+apply (frule_tac z = x in chain_extend)
+apply (assumption, blast)
+apply (unfold maxchain_def super_def psubset_def) 
+apply (blast elim!: equalityCE)
+done
+
+text{*Various other lemmas*}
+
+lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
+by (unfold chain_def, blast)
+
+lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
+by (unfold chain_def, blast)
+
+end
+