src/HOL/Algebra/CRing.thy
changeset 15763 b901a127ac73
parent 15696 1da4ce092c0b
child 16417 9bc16273c2d4
--- a/src/HOL/Algebra/CRing.thy	Sun Apr 17 19:40:43 2005 +0200
+++ b/src/HOL/Algebra/CRing.thy	Mon Apr 18 09:25:23 2005 +0200
@@ -574,28 +574,10 @@
 
 locale ring_hom_cring = cring R + cring S + var h +
   assumes homh [simp, intro]: "h \<in> ring_hom R S"
-(*
   notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
     and hom_mult [simp] = ring_hom_mult [OF homh]
     and hom_add [simp] = ring_hom_add [OF homh]
     and hom_one [simp] = ring_hom_one [OF homh]
-*)
-
-lemma (in ring_hom_cring) hom_closed [simp, intro]:
-  "x \<in> carrier R ==> h x \<in> carrier S"
-  by (simp add: ring_hom_closed [OF homh])
-
-lemma (in ring_hom_cring) hom_mult [simp]:
-  "[| x \<in> carrier R; y \<in> carrier R |] ==> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
-  by (simp add: ring_hom_mult [OF homh])
-
-lemma (in ring_hom_cring) hom_add [simp]:
-  "[| x \<in> carrier R; y \<in> carrier R |] ==> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
-  by (simp add: ring_hom_add [OF homh])
-
-lemma (in ring_hom_cring) hom_one [simp]:
-  "h \<one> = \<one>\<^bsub>S\<^esub>"
-  by (simp add: ring_hom_one [OF homh])
 
 lemma (in ring_hom_cring) hom_zero [simp]:
   "h \<zero> = \<zero>\<^bsub>S\<^esub>"