src/HOL/Extraction/Euclid.thy
changeset 39157 b98909faaea8
parent 39156 b4f18ac786fa
child 39158 e6b96b4cde7e
--- a/src/HOL/Extraction/Euclid.thy	Mon Sep 06 13:22:11 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,279 +0,0 @@
-(*  Title:      HOL/Extraction/Euclid.thy
-    Author:     Markus Wenzel, TU Muenchen
-    Author:     Freek Wiedijk, Radboud University Nijmegen
-    Author:     Stefan Berghofer, TU Muenchen
-*)
-
-header {* Euclid's theorem *}
-
-theory Euclid
-imports "~~/src/HOL/Number_Theory/UniqueFactorization" Util Efficient_Nat
-begin
-
-text {*
-A constructive version of the proof of Euclid's theorem by
-Markus Wenzel and Freek Wiedijk \cite{Wenzel-Wiedijk-JAR2002}.
-*}
-
-lemma factor_greater_one1: "n = m * k \<Longrightarrow> m < n \<Longrightarrow> k < n \<Longrightarrow> Suc 0 < m"
-  by (induct m) auto
-
-lemma factor_greater_one2: "n = m * k \<Longrightarrow> m < n \<Longrightarrow> k < n \<Longrightarrow> Suc 0 < k"
-  by (induct k) auto
-
-lemma prod_mn_less_k:
-  "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k"
-  by (induct m) auto
-
-lemma prime_eq: "prime (p::nat) = (1 < p \<and> (\<forall>m. m dvd p \<longrightarrow> 1 < m \<longrightarrow> m = p))"
-  apply (simp add: prime_nat_def)
-  apply (rule iffI)
-  apply blast
-  apply (erule conjE)
-  apply (rule conjI)
-  apply assumption
-  apply (rule allI impI)+
-  apply (erule allE)
-  apply (erule impE)
-  apply assumption
-  apply (case_tac "m=0")
-  apply simp
-  apply (case_tac "m=Suc 0")
-  apply simp
-  apply simp
-  done
-
-lemma prime_eq': "prime (p::nat) = (1 < p \<and> (\<forall>m k. p = m * k \<longrightarrow> 1 < m \<longrightarrow> m = p))"
-  by (simp add: prime_eq dvd_def HOL.all_simps [symmetric] del: HOL.all_simps)
-
-lemma not_prime_ex_mk:
-  assumes n: "Suc 0 < n"
-  shows "(\<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k) \<or> prime n"
-proof -
-  {
-    fix k
-    from nat_eq_dec
-    have "(\<exists>m<n. n = m * k) \<or> \<not> (\<exists>m<n. n = m * k)"
-      by (rule search)
-  }
-  hence "(\<exists>k<n. \<exists>m<n. n = m * k) \<or> \<not> (\<exists>k<n. \<exists>m<n. n = m * k)"
-    by (rule search)
-  thus ?thesis
-  proof
-    assume "\<exists>k<n. \<exists>m<n. n = m * k"
-    then obtain k m where k: "k<n" and m: "m<n" and nmk: "n = m * k"
-      by iprover
-    from nmk m k have "Suc 0 < m" by (rule factor_greater_one1)
-    moreover from nmk m k have "Suc 0 < k" by (rule factor_greater_one2)
-    ultimately show ?thesis using k m nmk by iprover
-  next
-    assume "\<not> (\<exists>k<n. \<exists>m<n. n = m * k)"
-    hence A: "\<forall>k<n. \<forall>m<n. n \<noteq> m * k" by iprover
-    have "\<forall>m k. n = m * k \<longrightarrow> Suc 0 < m \<longrightarrow> m = n"
-    proof (intro allI impI)
-      fix m k
-      assume nmk: "n = m * k"
-      assume m: "Suc 0 < m"
-      from n m nmk have k: "0 < k"
-        by (cases k) auto
-      moreover from n have n: "0 < n" by simp
-      moreover note m
-      moreover from nmk have "m * k = n" by simp
-      ultimately have kn: "k < n" by (rule prod_mn_less_k)
-      show "m = n"
-      proof (cases "k = Suc 0")
-        case True
-        with nmk show ?thesis by (simp only: mult_Suc_right)
-      next
-        case False
-        from m have "0 < m" by simp
-        moreover note n
-        moreover from False n nmk k have "Suc 0 < k" by auto
-        moreover from nmk have "k * m = n" by (simp only: mult_ac)
-        ultimately have mn: "m < n" by (rule prod_mn_less_k)
-        with kn A nmk show ?thesis by iprover
-      qed
-    qed
-    with n have "prime n"
-      by (simp only: prime_eq' One_nat_def simp_thms)
-    thus ?thesis ..
-  qed
-qed
-
-lemma dvd_factorial: "0 < m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact (n::nat)"
-proof (induct n rule: nat_induct)
-  case 0
-  then show ?case by simp
-next
-  case (Suc n)
-  from `m \<le> Suc n` show ?case
-  proof (rule le_SucE)
-    assume "m \<le> n"
-    with `0 < m` have "m dvd fact n" by (rule Suc)
-    then have "m dvd (fact n * Suc n)" by (rule dvd_mult2)
-    then show ?thesis by (simp add: mult_commute)
-  next
-    assume "m = Suc n"
-    then have "m dvd (fact n * Suc n)"
-      by (auto intro: dvdI simp: mult_ac)
-    then show ?thesis by (simp add: mult_commute)
-  qed
-qed
-
-lemma dvd_prod [iff]: "n dvd (PROD m\<Colon>nat:#multiset_of (n # ns). m)"
-  by (simp add: msetprod_Un msetprod_singleton)
-
-definition all_prime :: "nat list \<Rightarrow> bool" where
-  "all_prime ps \<longleftrightarrow> (\<forall>p\<in>set ps. prime p)"
-
-lemma all_prime_simps:
-  "all_prime []"
-  "all_prime (p # ps) \<longleftrightarrow> prime p \<and> all_prime ps"
-  by (simp_all add: all_prime_def)
-
-lemma all_prime_append:
-  "all_prime (ps @ qs) \<longleftrightarrow> all_prime ps \<and> all_prime qs"
-  by (simp add: all_prime_def ball_Un)
-
-lemma split_all_prime:
-  assumes "all_prime ms" and "all_prime ns"
-  shows "\<exists>qs. all_prime qs \<and> (PROD m\<Colon>nat:#multiset_of qs. m) =
-    (PROD m\<Colon>nat:#multiset_of ms. m) * (PROD m\<Colon>nat:#multiset_of ns. m)" (is "\<exists>qs. ?P qs \<and> ?Q qs")
-proof -
-  from assms have "all_prime (ms @ ns)"
-    by (simp add: all_prime_append)
-  moreover from assms have "(PROD m\<Colon>nat:#multiset_of (ms @ ns). m) =
-    (PROD m\<Colon>nat:#multiset_of ms. m) * (PROD m\<Colon>nat:#multiset_of ns. m)"
-    by (simp add: msetprod_Un)
-  ultimately have "?P (ms @ ns) \<and> ?Q (ms @ ns)" ..
-  then show ?thesis ..
-qed
-
-lemma all_prime_nempty_g_one:
-  assumes "all_prime ps" and "ps \<noteq> []"
-  shows "Suc 0 < (PROD m\<Colon>nat:#multiset_of ps. m)"
-  using `ps \<noteq> []` `all_prime ps` unfolding One_nat_def [symmetric] by (induct ps rule: list_nonempty_induct)
-    (simp_all add: all_prime_simps msetprod_singleton msetprod_Un prime_gt_1_nat less_1_mult del: One_nat_def)
-
-lemma factor_exists: "Suc 0 < n \<Longrightarrow> (\<exists>ps. all_prime ps \<and> (PROD m\<Colon>nat:#multiset_of ps. m) = n)"
-proof (induct n rule: nat_wf_ind)
-  case (1 n)
-  from `Suc 0 < n`
-  have "(\<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k) \<or> prime n"
-    by (rule not_prime_ex_mk)
-  then show ?case
-  proof 
-    assume "\<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k"
-    then obtain m k where m: "Suc 0 < m" and k: "Suc 0 < k" and mn: "m < n"
-      and kn: "k < n" and nmk: "n = m * k" by iprover
-    from mn and m have "\<exists>ps. all_prime ps \<and> (PROD m\<Colon>nat:#multiset_of ps. m) = m" by (rule 1)
-    then obtain ps1 where "all_prime ps1" and prod_ps1_m: "(PROD m\<Colon>nat:#multiset_of ps1. m) = m"
-      by iprover
-    from kn and k have "\<exists>ps. all_prime ps \<and> (PROD m\<Colon>nat:#multiset_of ps. m) = k" by (rule 1)
-    then obtain ps2 where "all_prime ps2" and prod_ps2_k: "(PROD m\<Colon>nat:#multiset_of ps2. m) = k"
-      by iprover
-    from `all_prime ps1` `all_prime ps2`
-    have "\<exists>ps. all_prime ps \<and> (PROD m\<Colon>nat:#multiset_of ps. m) =
-      (PROD m\<Colon>nat:#multiset_of ps1. m) * (PROD m\<Colon>nat:#multiset_of ps2. m)"
-      by (rule split_all_prime)
-    with prod_ps1_m prod_ps2_k nmk show ?thesis by simp
-  next
-    assume "prime n" then have "all_prime [n]" by (simp add: all_prime_simps)
-    moreover have "(PROD m\<Colon>nat:#multiset_of [n]. m) = n" by (simp add: msetprod_singleton)
-    ultimately have "all_prime [n] \<and> (PROD m\<Colon>nat:#multiset_of [n]. m) = n" ..
-    then show ?thesis ..
-  qed
-qed
-
-lemma prime_factor_exists:
-  assumes N: "(1::nat) < n"
-  shows "\<exists>p. prime p \<and> p dvd n"
-proof -
-  from N obtain ps where "all_prime ps"
-    and prod_ps: "n = (PROD m\<Colon>nat:#multiset_of ps. m)" using factor_exists
-    by simp iprover
-  with N have "ps \<noteq> []"
-    by (auto simp add: all_prime_nempty_g_one msetprod_empty)
-  then obtain p qs where ps: "ps = p # qs" by (cases ps) simp
-  with `all_prime ps` have "prime p" by (simp add: all_prime_simps)
-  moreover from `all_prime ps` ps prod_ps
-  have "p dvd n" by (simp only: dvd_prod)
-  ultimately show ?thesis by iprover
-qed
-
-text {*
-Euclid's theorem: there are infinitely many primes.
-*}
-
-lemma Euclid: "\<exists>p::nat. prime p \<and> n < p"
-proof -
-  let ?k = "fact n + 1"
-  have "1 < fact n + 1" by simp
-  then obtain p where prime: "prime p" and dvd: "p dvd ?k" using prime_factor_exists by iprover
-  have "n < p"
-  proof -
-    have "\<not> p \<le> n"
-    proof
-      assume pn: "p \<le> n"
-      from `prime p` have "0 < p" by (rule prime_gt_0_nat)
-      then have "p dvd fact n" using pn by (rule dvd_factorial)
-      with dvd have "p dvd ?k - fact n" by (rule dvd_diff_nat)
-      then have "p dvd 1" by simp
-      with prime show False by auto
-    qed
-    then show ?thesis by simp
-  qed
-  with prime show ?thesis by iprover
-qed
-
-extract Euclid
-
-text {*
-The program extracted from the proof of Euclid's theorem looks as follows.
-@{thm [display] Euclid_def}
-The program corresponding to the proof of the factorization theorem is
-@{thm [display] factor_exists_def}
-*}
-
-instantiation nat :: default
-begin
-
-definition "default = (0::nat)"
-
-instance ..
-
-end
-
-instantiation list :: (type) default
-begin
-
-definition "default = []"
-
-instance ..
-
-end
-
-primrec iterate :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a list" where
-  "iterate 0 f x = []"
-  | "iterate (Suc n) f x = (let y = f x in y # iterate n f y)"
-
-lemma "factor_exists 1007 = [53, 19]" by eval
-lemma "factor_exists 567 = [7, 3, 3, 3, 3]" by eval
-lemma "factor_exists 345 = [23, 5, 3]" by eval
-lemma "factor_exists 999 = [37, 3, 3, 3]" by eval
-lemma "factor_exists 876 = [73, 3, 2, 2]" by eval
-
-lemma "iterate 4 Euclid 0 = [2, 3, 7, 71]" by eval
-
-consts_code
-  default ("(error \"default\")")
-
-lemma "factor_exists 1007 = [53, 19]" by evaluation
-lemma "factor_exists 567 = [7, 3, 3, 3, 3]" by evaluation
-lemma "factor_exists 345 = [23, 5, 3]" by evaluation
-lemma "factor_exists 999 = [37, 3, 3, 3]" by evaluation
-lemma "factor_exists 876 = [73, 3, 2, 2]" by evaluation
-
-lemma "iterate 4 Euclid 0 = [2, 3, 7, 71]" by evaluation
-
-end