src/HOL/Extraction/Warshall.thy
changeset 39157 b98909faaea8
parent 39156 b4f18ac786fa
child 39158 e6b96b4cde7e
--- a/src/HOL/Extraction/Warshall.thy	Mon Sep 06 13:22:11 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,261 +0,0 @@
-(*  Title:      HOL/Extraction/Warshall.thy
-    Author:     Stefan Berghofer, TU Muenchen
-*)
-
-header {* Warshall's algorithm *}
-
-theory Warshall
-imports Main
-begin
-
-text {*
-  Derivation of Warshall's algorithm using program extraction,
-  based on Berger, Schwichtenberg and Seisenberger \cite{Berger-JAR-2001}.
-*}
-
-datatype b = T | F
-
-primrec
-  is_path' :: "('a \<Rightarrow> 'a \<Rightarrow> b) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a \<Rightarrow> bool"
-where
-    "is_path' r x [] z = (r x z = T)"
-  | "is_path' r x (y # ys) z = (r x y = T \<and> is_path' r y ys z)"
-
-definition
-  is_path :: "(nat \<Rightarrow> nat \<Rightarrow> b) \<Rightarrow> (nat * nat list * nat) \<Rightarrow>
-    nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
-where
-  "is_path r p i j k \<longleftrightarrow> fst p = j \<and> snd (snd p) = k \<and>
-     list_all (\<lambda>x. x < i) (fst (snd p)) \<and>
-     is_path' r (fst p) (fst (snd p)) (snd (snd p))"
-
-definition
-  conc :: "('a * 'a list * 'a) \<Rightarrow> ('a * 'a list * 'a) \<Rightarrow> ('a * 'a list * 'a)"
-where
-  "conc p q = (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))"
-
-theorem is_path'_snoc [simp]:
-  "\<And>x. is_path' r x (ys @ [y]) z = (is_path' r x ys y \<and> r y z = T)"
-  by (induct ys) simp+
-
-theorem list_all_scoc [simp]: "list_all P (xs @ [x]) \<longleftrightarrow> P x \<and> list_all P xs"
-  by (induct xs, simp+, iprover)
-
-theorem list_all_lemma: 
-  "list_all P xs \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> list_all Q xs"
-proof -
-  assume PQ: "\<And>x. P x \<Longrightarrow> Q x"
-  show "list_all P xs \<Longrightarrow> list_all Q xs"
-  proof (induct xs)
-    case Nil
-    show ?case by simp
-  next
-    case (Cons y ys)
-    hence Py: "P y" by simp
-    from Cons have Pys: "list_all P ys" by simp
-    show ?case
-      by simp (rule conjI PQ Py Cons Pys)+
-  qed
-qed
-
-theorem lemma1: "\<And>p. is_path r p i j k \<Longrightarrow> is_path r p (Suc i) j k"
-  apply (unfold is_path_def)
-  apply (simp cong add: conj_cong add: split_paired_all)
-  apply (erule conjE)+
-  apply (erule list_all_lemma)
-  apply simp
-  done
-
-theorem lemma2: "\<And>p. is_path r p 0 j k \<Longrightarrow> r j k = T"
-  apply (unfold is_path_def)
-  apply (simp cong add: conj_cong add: split_paired_all)
-  apply (case_tac "aa")
-  apply simp+
-  done
-
-theorem is_path'_conc: "is_path' r j xs i \<Longrightarrow> is_path' r i ys k \<Longrightarrow>
-  is_path' r j (xs @ i # ys) k"
-proof -
-  assume pys: "is_path' r i ys k"
-  show "\<And>j. is_path' r j xs i \<Longrightarrow> is_path' r j (xs @ i # ys) k"
-  proof (induct xs)
-    case (Nil j)
-    hence "r j i = T" by simp
-    with pys show ?case by simp
-  next
-    case (Cons z zs j)
-    hence jzr: "r j z = T" by simp
-    from Cons have pzs: "is_path' r z zs i" by simp
-    show ?case
-      by simp (rule conjI jzr Cons pzs)+
-  qed
-qed
-
-theorem lemma3:
-  "\<And>p q. is_path r p i j i \<Longrightarrow> is_path r q i i k \<Longrightarrow>
-   is_path r (conc p q) (Suc i) j k"
-  apply (unfold is_path_def conc_def)
-  apply (simp cong add: conj_cong add: split_paired_all)
-  apply (erule conjE)+
-  apply (rule conjI)
-  apply (erule list_all_lemma)
-  apply simp
-  apply (rule conjI)
-  apply (erule list_all_lemma)
-  apply simp
-  apply (rule is_path'_conc)
-  apply assumption+
-  done
-
-theorem lemma5:
-  "\<And>p. is_path r p (Suc i) j k \<Longrightarrow> ~ is_path r p i j k \<Longrightarrow>
-   (\<exists>q. is_path r q i j i) \<and> (\<exists>q'. is_path r q' i i k)"
-proof (simp cong add: conj_cong add: split_paired_all is_path_def, (erule conjE)+)
-  fix xs
-  assume asms:
-    "list_all (\<lambda>x. x < Suc i) xs"
-    "is_path' r j xs k"
-    "\<not> list_all (\<lambda>x. x < i) xs"
-  show "(\<exists>ys. list_all (\<lambda>x. x < i) ys \<and> is_path' r j ys i) \<and>
-    (\<exists>ys. list_all (\<lambda>x. x < i) ys \<and> is_path' r i ys k)"
-  proof
-    show "\<And>j. list_all (\<lambda>x. x < Suc i) xs \<Longrightarrow> is_path' r j xs k \<Longrightarrow>
-      \<not> list_all (\<lambda>x. x < i) xs \<Longrightarrow>
-    \<exists>ys. list_all (\<lambda>x. x < i) ys \<and> is_path' r j ys i" (is "PROP ?ih xs")
-    proof (induct xs)
-      case Nil
-      thus ?case by simp
-    next
-      case (Cons a as j)
-      show ?case
-      proof (cases "a=i")
-        case True
-        show ?thesis
-        proof
-          from True and Cons have "r j i = T" by simp
-          thus "list_all (\<lambda>x. x < i) [] \<and> is_path' r j [] i" by simp
-        qed
-      next
-        case False
-        have "PROP ?ih as" by (rule Cons)
-        then obtain ys where ys: "list_all (\<lambda>x. x < i) ys \<and> is_path' r a ys i"
-        proof
-          from Cons show "list_all (\<lambda>x. x < Suc i) as" by simp
-          from Cons show "is_path' r a as k" by simp
-          from Cons and False show "\<not> list_all (\<lambda>x. x < i) as" by (simp)
-        qed
-        show ?thesis
-        proof
-          from Cons False ys
-          show "list_all (\<lambda>x. x<i) (a#ys) \<and> is_path' r j (a#ys) i" by simp
-        qed
-      qed
-    qed
-    show "\<And>k. list_all (\<lambda>x. x < Suc i) xs \<Longrightarrow> is_path' r j xs k \<Longrightarrow>
-      \<not> list_all (\<lambda>x. x < i) xs \<Longrightarrow>
-      \<exists>ys. list_all (\<lambda>x. x < i) ys \<and> is_path' r i ys k" (is "PROP ?ih xs")
-    proof (induct xs rule: rev_induct)
-      case Nil
-      thus ?case by simp
-    next
-      case (snoc a as k)
-      show ?case
-      proof (cases "a=i")
-        case True
-        show ?thesis
-        proof
-          from True and snoc have "r i k = T" by simp
-          thus "list_all (\<lambda>x. x < i) [] \<and> is_path' r i [] k" by simp
-        qed
-      next
-        case False
-        have "PROP ?ih as" by (rule snoc)
-        then obtain ys where ys: "list_all (\<lambda>x. x < i) ys \<and> is_path' r i ys a"
-        proof
-          from snoc show "list_all (\<lambda>x. x < Suc i) as" by simp
-          from snoc show "is_path' r j as a" by simp
-          from snoc and False show "\<not> list_all (\<lambda>x. x < i) as" by simp
-        qed
-        show ?thesis
-        proof
-          from snoc False ys
-          show "list_all (\<lambda>x. x < i) (ys @ [a]) \<and> is_path' r i (ys @ [a]) k"
-            by simp
-        qed
-      qed
-    qed
-  qed (rule asms)+
-qed
-
-theorem lemma5':
-  "\<And>p. is_path r p (Suc i) j k \<Longrightarrow> \<not> is_path r p i j k \<Longrightarrow>
-   \<not> (\<forall>q. \<not> is_path r q i j i) \<and> \<not> (\<forall>q'. \<not> is_path r q' i i k)"
-  by (iprover dest: lemma5)
-
-theorem warshall: 
-  "\<And>j k. \<not> (\<exists>p. is_path r p i j k) \<or> (\<exists>p. is_path r p i j k)"
-proof (induct i)
-  case (0 j k)
-  show ?case
-  proof (cases "r j k")
-    assume "r j k = T"
-    hence "is_path r (j, [], k) 0 j k"
-      by (simp add: is_path_def)
-    hence "\<exists>p. is_path r p 0 j k" ..
-    thus ?thesis ..
-  next
-    assume "r j k = F"
-    hence "r j k ~= T" by simp
-    hence "\<not> (\<exists>p. is_path r p 0 j k)"
-      by (iprover dest: lemma2)
-    thus ?thesis ..
-  qed
-next
-  case (Suc i j k)
-  thus ?case
-  proof
-    assume h1: "\<not> (\<exists>p. is_path r p i j k)"
-    from Suc show ?case
-    proof
-      assume "\<not> (\<exists>p. is_path r p i j i)"
-      with h1 have "\<not> (\<exists>p. is_path r p (Suc i) j k)"
-        by (iprover dest: lemma5')
-      thus ?case ..
-    next
-      assume "\<exists>p. is_path r p i j i"
-      then obtain p where h2: "is_path r p i j i" ..
-      from Suc show ?case
-      proof
-        assume "\<not> (\<exists>p. is_path r p i i k)"
-        with h1 have "\<not> (\<exists>p. is_path r p (Suc i) j k)"
-          by (iprover dest: lemma5')
-        thus ?case ..
-      next
-        assume "\<exists>q. is_path r q i i k"
-        then obtain q where "is_path r q i i k" ..
-        with h2 have "is_path r (conc p q) (Suc i) j k" 
-          by (rule lemma3)
-        hence "\<exists>pq. is_path r pq (Suc i) j k" ..
-        thus ?case ..
-      qed
-    qed
-  next
-    assume "\<exists>p. is_path r p i j k"
-    hence "\<exists>p. is_path r p (Suc i) j k"
-      by (iprover intro: lemma1)
-    thus ?case ..
-  qed
-qed
-
-extract warshall
-
-text {*
-  The program extracted from the above proof looks as follows
-  @{thm [display, eta_contract=false] warshall_def [no_vars]}
-  The corresponding correctness theorem is
-  @{thm [display] warshall_correctness [no_vars]}
-*}
-
-ML "@{code warshall}"
-
-end