src/HOL/Lambda/InductTermi.thy
changeset 39157 b98909faaea8
parent 39156 b4f18ac786fa
child 39158 e6b96b4cde7e
--- a/src/HOL/Lambda/InductTermi.thy	Mon Sep 06 13:22:11 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,108 +0,0 @@
-(*  Title:      HOL/Lambda/InductTermi.thy
-    Author:     Tobias Nipkow
-    Copyright   1998 TU Muenchen
-
-Inductive characterization of terminating lambda terms.  Goes back to
-Raamsdonk & Severi. On normalization. CWI TR CS-R9545, 1995.  Also
-rediscovered by Matthes and Joachimski.
-*)
-
-header {* Inductive characterization of terminating lambda terms *}
-
-theory InductTermi imports ListBeta begin
-
-subsection {* Terminating lambda terms *}
-
-inductive IT :: "dB => bool"
-  where
-    Var [intro]: "listsp IT rs ==> IT (Var n \<degree>\<degree> rs)"
-  | Lambda [intro]: "IT r ==> IT (Abs r)"
-  | Beta [intro]: "IT ((r[s/0]) \<degree>\<degree> ss) ==> IT s ==> IT ((Abs r \<degree> s) \<degree>\<degree> ss)"
-
-
-subsection {* Every term in @{text "IT"} terminates *}
-
-lemma double_induction_lemma [rule_format]:
-  "termip beta s ==> \<forall>t. termip beta t -->
-    (\<forall>r ss. t = r[s/0] \<degree>\<degree> ss --> termip beta (Abs r \<degree> s \<degree>\<degree> ss))"
-  apply (erule accp_induct)
-  apply (rule allI)
-  apply (rule impI)
-  apply (erule thin_rl)
-  apply (erule accp_induct)
-  apply clarify
-  apply (rule accp.accI)
-  apply (safe elim!: apps_betasE)
-    apply (blast intro: subst_preserves_beta apps_preserves_beta)
-   apply (blast intro: apps_preserves_beta2 subst_preserves_beta2 rtranclp_converseI
-     dest: accp_downwards)  (* FIXME: acc_downwards can be replaced by acc(R ^* ) = acc(r) *)
-  apply (blast dest: apps_preserves_betas)
-  done
-
-lemma IT_implies_termi: "IT t ==> termip beta t"
-  apply (induct set: IT)
-    apply (drule rev_predicate1D [OF _ listsp_mono [where B="termip beta"]])
-    apply (fast intro!: predicate1I)
-    apply (drule lists_accD)
-    apply (erule accp_induct)
-    apply (rule accp.accI)
-    apply (blast dest: head_Var_reduction)
-   apply (erule accp_induct)
-   apply (rule accp.accI)
-   apply blast
-  apply (blast intro: double_induction_lemma)
-  done
-
-
-subsection {* Every terminating term is in @{text "IT"} *}
-
-declare Var_apps_neq_Abs_apps [symmetric, simp]
-
-lemma [simp, THEN not_sym, simp]: "Var n \<degree>\<degree> ss \<noteq> Abs r \<degree> s \<degree>\<degree> ts"
-  by (simp add: foldl_Cons [symmetric] del: foldl_Cons)
-
-lemma [simp]:
-  "(Abs r \<degree> s \<degree>\<degree> ss = Abs r' \<degree> s' \<degree>\<degree> ss') = (r = r' \<and> s = s' \<and> ss = ss')"
-  by (simp add: foldl_Cons [symmetric] del: foldl_Cons)
-
-inductive_cases [elim!]:
-  "IT (Var n \<degree>\<degree> ss)"
-  "IT (Abs t)"
-  "IT (Abs r \<degree> s \<degree>\<degree> ts)"
-
-theorem termi_implies_IT: "termip beta r ==> IT r"
-  apply (erule accp_induct)
-  apply (rename_tac r)
-  apply (erule thin_rl)
-  apply (erule rev_mp)
-  apply simp
-  apply (rule_tac t = r in Apps_dB_induct)
-   apply clarify
-   apply (rule IT.intros)
-   apply clarify
-   apply (drule bspec, assumption)
-   apply (erule mp)
-   apply clarify
-   apply (drule_tac r=beta in conversepI)
-   apply (drule_tac r="beta^--1" in ex_step1I, assumption)
-   apply clarify
-   apply (rename_tac us)
-   apply (erule_tac x = "Var n \<degree>\<degree> us" in allE)
-   apply force
-   apply (rename_tac u ts)
-   apply (case_tac ts)
-    apply simp
-    apply blast
-   apply (rename_tac s ss)
-   apply simp
-   apply clarify
-   apply (rule IT.intros)
-    apply (blast intro: apps_preserves_beta)
-   apply (erule mp)
-   apply clarify
-   apply (rename_tac t)
-   apply (erule_tac x = "Abs u \<degree> t \<degree>\<degree> ss" in allE)
-   apply force
-   done
-
-end