src/HOL/Proofs/Extraction/Greatest_Common_Divisor.thy
changeset 39157 b98909faaea8
parent 37678 0040bafffdef
child 45170 7dd207fe7b6e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Proofs/Extraction/Greatest_Common_Divisor.thy	Mon Sep 06 14:18:16 2010 +0200
@@ -0,0 +1,96 @@
+(*  Title:      HOL/Proofs/Extraction/Greatest_Common_Divisor.thy
+    Author:     Stefan Berghofer, TU Muenchen
+    Author:     Helmut Schwichtenberg, LMU Muenchen
+*)
+
+header {* Greatest common divisor *}
+
+theory Greatest_Common_Divisor
+imports QuotRem
+begin
+
+theorem greatest_common_divisor:
+  "\<And>n::nat. Suc m < n \<Longrightarrow> \<exists>k n1 m1. k * n1 = n \<and> k * m1 = Suc m \<and>
+     (\<forall>l l1 l2. l * l1 = n \<longrightarrow> l * l2 = Suc m \<longrightarrow> l \<le> k)"
+proof (induct m rule: nat_wf_ind)
+  case (1 m n)
+  from division obtain r q where h1: "n = Suc m * q + r" and h2: "r \<le> m"
+    by iprover
+  show ?case
+  proof (cases r)
+    case 0
+    with h1 have "Suc m * q = n" by simp
+    moreover have "Suc m * 1 = Suc m" by simp
+    moreover {
+      fix l2 have "\<And>l l1. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> Suc m"
+        by (cases l2) simp_all }
+    ultimately show ?thesis by iprover
+  next
+    case (Suc nat)
+    with h2 have h: "nat < m" by simp
+    moreover from h have "Suc nat < Suc m" by simp
+    ultimately have "\<exists>k m1 r1. k * m1 = Suc m \<and> k * r1 = Suc nat \<and>
+      (\<forall>l l1 l2. l * l1 = Suc m \<longrightarrow> l * l2 = Suc nat \<longrightarrow> l \<le> k)"
+      by (rule 1)
+    then obtain k m1 r1 where
+      h1': "k * m1 = Suc m"
+      and h2': "k * r1 = Suc nat"
+      and h3': "\<And>l l1 l2. l * l1 = Suc m \<Longrightarrow> l * l2 = Suc nat \<Longrightarrow> l \<le> k"
+      by iprover
+    have mn: "Suc m < n" by (rule 1)
+    from h1 h1' h2' Suc have "k * (m1 * q + r1) = n" 
+      by (simp add: add_mult_distrib2 nat_mult_assoc [symmetric])
+    moreover have "\<And>l l1 l2. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> k"
+    proof -
+      fix l l1 l2
+      assume ll1n: "l * l1 = n"
+      assume ll2m: "l * l2 = Suc m"
+      moreover have "l * (l1 - l2 * q) = Suc nat"
+        by (simp add: diff_mult_distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
+      ultimately show "l \<le> k" by (rule h3')
+    qed
+    ultimately show ?thesis using h1' by iprover
+  qed
+qed
+
+extract greatest_common_divisor
+
+text {*
+The extracted program for computing the greatest common divisor is
+@{thm [display] greatest_common_divisor_def}
+*}
+
+instantiation nat :: default
+begin
+
+definition "default = (0::nat)"
+
+instance ..
+
+end
+
+instantiation prod :: (default, default) default
+begin
+
+definition "default = (default, default)"
+
+instance ..
+
+end
+
+instantiation "fun" :: (type, default) default
+begin
+
+definition "default = (\<lambda>x. default)"
+
+instance ..
+
+end
+
+consts_code
+  default ("(error \"default\")")
+
+lemma "greatest_common_divisor 7 12 = (4, 3, 2)" by evaluation
+lemma "greatest_common_divisor 7 12 = (4, 3, 2)" by eval
+
+end