src/HOL/Proofs/Extraction/Pigeonhole.thy
changeset 39157 b98909faaea8
parent 37678 0040bafffdef
child 41413 64cd30d6b0b8
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Proofs/Extraction/Pigeonhole.thy	Mon Sep 06 14:18:16 2010 +0200
@@ -0,0 +1,275 @@
+(*  Title:      HOL/Proofs/Extraction/Pigeonhole.thy
+    Author:     Stefan Berghofer, TU Muenchen
+*)
+
+header {* The pigeonhole principle *}
+
+theory Pigeonhole
+imports Util Efficient_Nat
+begin
+
+text {*
+We formalize two proofs of the pigeonhole principle, which lead
+to extracted programs of quite different complexity. The original
+formalization of these proofs in {\sc Nuprl} is due to
+Aleksey Nogin \cite{Nogin-ENTCS-2000}.
+
+This proof yields a polynomial program.
+*}
+
+theorem pigeonhole:
+  "\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"
+proof (induct n)
+  case 0
+  hence "Suc 0 \<le> Suc 0 \<and> 0 < Suc 0 \<and> f (Suc 0) = f 0" by simp
+  thus ?case by iprover
+next
+  case (Suc n)
+  {
+    fix k
+    have
+      "k \<le> Suc (Suc n) \<Longrightarrow>
+      (\<And>i j. Suc k \<le> i \<Longrightarrow> i \<le> Suc (Suc n) \<Longrightarrow> j < i \<Longrightarrow> f i \<noteq> f j) \<Longrightarrow>
+      (\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j)"
+    proof (induct k)
+      case 0
+      let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"
+      have "\<not> (\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j)"
+      proof
+        assume "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"
+        then obtain i j where i: "i \<le> Suc n" and j: "j < i"
+          and f: "?f i = ?f j" by iprover
+        from j have i_nz: "Suc 0 \<le> i" by simp
+        from i have iSSn: "i \<le> Suc (Suc n)" by simp
+        have S0SSn: "Suc 0 \<le> Suc (Suc n)" by simp
+        show False
+        proof cases
+          assume fi: "f i = Suc n"
+          show False
+          proof cases
+            assume fj: "f j = Suc n"
+            from i_nz and iSSn and j have "f i \<noteq> f j" by (rule 0)
+            moreover from fi have "f i = f j"
+              by (simp add: fj [symmetric])
+            ultimately show ?thesis ..
+          next
+            from i and j have "j < Suc (Suc n)" by simp
+            with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f j"
+              by (rule 0)
+            moreover assume "f j \<noteq> Suc n"
+            with fi and f have "f (Suc (Suc n)) = f j" by simp
+            ultimately show False ..
+          qed
+        next
+          assume fi: "f i \<noteq> Suc n"
+          show False
+          proof cases
+            from i have "i < Suc (Suc n)" by simp
+            with S0SSn and le_refl have "f (Suc (Suc n)) \<noteq> f i"
+              by (rule 0)
+            moreover assume "f j = Suc n"
+            with fi and f have "f (Suc (Suc n)) = f i" by simp
+            ultimately show False ..
+          next
+            from i_nz and iSSn and j
+            have "f i \<noteq> f j" by (rule 0)
+            moreover assume "f j \<noteq> Suc n"
+            with fi and f have "f i = f j" by simp
+            ultimately show False ..
+          qed
+        qed
+      qed
+      moreover have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"
+      proof -
+        fix i assume "i \<le> Suc n"
+        hence i: "i < Suc (Suc n)" by simp
+        have "f (Suc (Suc n)) \<noteq> f i"
+          by (rule 0) (simp_all add: i)
+        moreover have "f (Suc (Suc n)) \<le> Suc n"
+          by (rule Suc) simp
+        moreover from i have "i \<le> Suc (Suc n)" by simp
+        hence "f i \<le> Suc n" by (rule Suc)
+        ultimately show "?thesis i"
+          by simp
+      qed
+      hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j"
+        by (rule Suc)
+      ultimately show ?case ..
+    next
+      case (Suc k)
+      from search [OF nat_eq_dec] show ?case
+      proof
+        assume "\<exists>j<Suc k. f (Suc k) = f j"
+        thus ?case by (iprover intro: le_refl)
+      next
+        assume nex: "\<not> (\<exists>j<Suc k. f (Suc k) = f j)"
+        have "\<exists>i j. i \<le> k \<and> j < i \<and> f i = f j"
+        proof (rule Suc)
+          from Suc show "k \<le> Suc (Suc n)" by simp
+          fix i j assume k: "Suc k \<le> i" and i: "i \<le> Suc (Suc n)"
+            and j: "j < i"
+          show "f i \<noteq> f j"
+          proof cases
+            assume eq: "i = Suc k"
+            show ?thesis
+            proof
+              assume "f i = f j"
+              hence "f (Suc k) = f j" by (simp add: eq)
+              with nex and j and eq show False by iprover
+            qed
+          next
+            assume "i \<noteq> Suc k"
+            with k have "Suc (Suc k) \<le> i" by simp
+            thus ?thesis using i and j by (rule Suc)
+          qed
+        qed
+        thus ?thesis by (iprover intro: le_SucI)
+      qed
+    qed
+  }
+  note r = this
+  show ?case by (rule r) simp_all
+qed
+
+text {*
+The following proof, although quite elegant from a mathematical point of view,
+leads to an exponential program:
+*}
+
+theorem pigeonhole_slow:
+  "\<And>f. (\<And>i. i \<le> Suc n \<Longrightarrow> f i \<le> n) \<Longrightarrow> \<exists>i j. i \<le> Suc n \<and> j < i \<and> f i = f j"
+proof (induct n)
+  case 0
+  have "Suc 0 \<le> Suc 0" ..
+  moreover have "0 < Suc 0" ..
+  moreover from 0 have "f (Suc 0) = f 0" by simp
+  ultimately show ?case by iprover
+next
+  case (Suc n)
+  from search [OF nat_eq_dec] show ?case
+  proof
+    assume "\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j"
+    thus ?case by (iprover intro: le_refl)
+  next
+    assume "\<not> (\<exists>j < Suc (Suc n). f (Suc (Suc n)) = f j)"
+    hence nex: "\<forall>j < Suc (Suc n). f (Suc (Suc n)) \<noteq> f j" by iprover
+    let ?f = "\<lambda>i. if f i = Suc n then f (Suc (Suc n)) else f i"
+    have "\<And>i. i \<le> Suc n \<Longrightarrow> ?f i \<le> n"
+    proof -
+      fix i assume i: "i \<le> Suc n"
+      show "?thesis i"
+      proof (cases "f i = Suc n")
+        case True
+        from i and nex have "f (Suc (Suc n)) \<noteq> f i" by simp
+        with True have "f (Suc (Suc n)) \<noteq> Suc n" by simp
+        moreover from Suc have "f (Suc (Suc n)) \<le> Suc n" by simp
+        ultimately have "f (Suc (Suc n)) \<le> n" by simp
+        with True show ?thesis by simp
+      next
+        case False
+        from Suc and i have "f i \<le> Suc n" by simp
+        with False show ?thesis by simp
+      qed
+    qed
+    hence "\<exists>i j. i \<le> Suc n \<and> j < i \<and> ?f i = ?f j" by (rule Suc)
+    then obtain i j where i: "i \<le> Suc n" and ji: "j < i" and f: "?f i = ?f j"
+      by iprover
+    have "f i = f j"
+    proof (cases "f i = Suc n")
+      case True
+      show ?thesis
+      proof (cases "f j = Suc n")
+        assume "f j = Suc n"
+        with True show ?thesis by simp
+      next
+        assume "f j \<noteq> Suc n"
+        moreover from i ji nex have "f (Suc (Suc n)) \<noteq> f j" by simp
+        ultimately show ?thesis using True f by simp
+      qed
+    next
+      case False
+      show ?thesis
+      proof (cases "f j = Suc n")
+        assume "f j = Suc n"
+        moreover from i nex have "f (Suc (Suc n)) \<noteq> f i" by simp
+        ultimately show ?thesis using False f by simp
+      next
+        assume "f j \<noteq> Suc n"
+        with False f show ?thesis by simp
+      qed
+    qed
+    moreover from i have "i \<le> Suc (Suc n)" by simp
+    ultimately show ?thesis using ji by iprover
+  qed
+qed
+
+extract pigeonhole pigeonhole_slow
+
+text {*
+The programs extracted from the above proofs look as follows:
+@{thm [display] pigeonhole_def}
+@{thm [display] pigeonhole_slow_def}
+The program for searching for an element in an array is
+@{thm [display,eta_contract=false] search_def}
+The correctness statement for @{term "pigeonhole"} is
+@{thm [display] pigeonhole_correctness [no_vars]}
+
+In order to analyze the speed of the above programs,
+we generate ML code from them.
+*}
+
+instantiation nat :: default
+begin
+
+definition "default = (0::nat)"
+
+instance ..
+
+end
+
+instantiation prod :: (default, default) default
+begin
+
+definition "default = (default, default)"
+
+instance ..
+
+end
+
+definition
+  "test n u = pigeonhole n (\<lambda>m. m - 1)"
+definition
+  "test' n u = pigeonhole_slow n (\<lambda>m. m - 1)"
+definition
+  "test'' u = pigeonhole 8 (op ! [0, 1, 2, 3, 4, 5, 6, 3, 7, 8])"
+
+ML "timeit (@{code test} 10)" 
+ML "timeit (@{code test'} 10)"
+ML "timeit (@{code test} 20)"
+ML "timeit (@{code test'} 20)"
+ML "timeit (@{code test} 25)"
+ML "timeit (@{code test'} 25)"
+ML "timeit (@{code test} 500)"
+ML "timeit @{code test''}"
+
+consts_code
+  "default :: nat" ("{* 0::nat *}")
+  "default :: nat \<times> nat" ("{* (0::nat, 0::nat) *}")
+
+code_module PH
+contains
+  test = test
+  test' = test'
+  test'' = test''
+
+ML "timeit (PH.test 10)"
+ML "timeit (PH.test' 10)"
+ML "timeit (PH.test 20)"
+ML "timeit (PH.test' 20)"
+ML "timeit (PH.test 25)"
+ML "timeit (PH.test' 25)"
+ML "timeit (PH.test 500)"
+ML "timeit PH.test''"
+
+end
+