src/HOL/Proofs/Lambda/Lambda.thy
changeset 39157 b98909faaea8
parent 39126 ee117c5b3b75
child 46506 c7faa011bfa7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Proofs/Lambda/Lambda.thy	Mon Sep 06 14:18:16 2010 +0200
@@ -0,0 +1,190 @@
+(*  Title:      HOL/Proofs/Lambda/Lambda.thy
+    Author:     Tobias Nipkow
+    Copyright   1995 TU Muenchen
+*)
+
+header {* Basic definitions of Lambda-calculus *}
+
+theory Lambda imports Main begin
+
+declare [[syntax_ambiguity_level = 100]]
+
+
+subsection {* Lambda-terms in de Bruijn notation and substitution *}
+
+datatype dB =
+    Var nat
+  | App dB dB (infixl "\<degree>" 200)
+  | Abs dB
+
+primrec
+  lift :: "[dB, nat] => dB"
+where
+    "lift (Var i) k = (if i < k then Var i else Var (i + 1))"
+  | "lift (s \<degree> t) k = lift s k \<degree> lift t k"
+  | "lift (Abs s) k = Abs (lift s (k + 1))"
+
+primrec
+  subst :: "[dB, dB, nat] => dB"  ("_[_'/_]" [300, 0, 0] 300)
+where (* FIXME base names *)
+    subst_Var: "(Var i)[s/k] =
+      (if k < i then Var (i - 1) else if i = k then s else Var i)"
+  | subst_App: "(t \<degree> u)[s/k] = t[s/k] \<degree> u[s/k]"
+  | subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])"
+
+declare subst_Var [simp del]
+
+text {* Optimized versions of @{term subst} and @{term lift}. *}
+
+primrec
+  liftn :: "[nat, dB, nat] => dB"
+where
+    "liftn n (Var i) k = (if i < k then Var i else Var (i + n))"
+  | "liftn n (s \<degree> t) k = liftn n s k \<degree> liftn n t k"
+  | "liftn n (Abs s) k = Abs (liftn n s (k + 1))"
+
+primrec
+  substn :: "[dB, dB, nat] => dB"
+where
+    "substn (Var i) s k =
+      (if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)"
+  | "substn (t \<degree> u) s k = substn t s k \<degree> substn u s k"
+  | "substn (Abs t) s k = Abs (substn t s (k + 1))"
+
+
+subsection {* Beta-reduction *}
+
+inductive beta :: "[dB, dB] => bool"  (infixl "\<rightarrow>\<^sub>\<beta>" 50)
+  where
+    beta [simp, intro!]: "Abs s \<degree> t \<rightarrow>\<^sub>\<beta> s[t/0]"
+  | appL [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> s \<degree> u \<rightarrow>\<^sub>\<beta> t \<degree> u"
+  | appR [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> u \<degree> s \<rightarrow>\<^sub>\<beta> u \<degree> t"
+  | abs [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> Abs s \<rightarrow>\<^sub>\<beta> Abs t"
+
+abbreviation
+  beta_reds :: "[dB, dB] => bool"  (infixl "->>" 50) where
+  "s ->> t == beta^** s t"
+
+notation (latex)
+  beta_reds  (infixl "\<rightarrow>\<^sub>\<beta>\<^sup>*" 50)
+
+inductive_cases beta_cases [elim!]:
+  "Var i \<rightarrow>\<^sub>\<beta> t"
+  "Abs r \<rightarrow>\<^sub>\<beta> s"
+  "s \<degree> t \<rightarrow>\<^sub>\<beta> u"
+
+declare if_not_P [simp] not_less_eq [simp]
+  -- {* don't add @{text "r_into_rtrancl[intro!]"} *}
+
+
+subsection {* Congruence rules *}
+
+lemma rtrancl_beta_Abs [intro!]:
+    "s \<rightarrow>\<^sub>\<beta>\<^sup>* s' ==> Abs s \<rightarrow>\<^sub>\<beta>\<^sup>* Abs s'"
+  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
+
+lemma rtrancl_beta_AppL:
+    "s \<rightarrow>\<^sub>\<beta>\<^sup>* s' ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s' \<degree> t"
+  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
+
+lemma rtrancl_beta_AppR:
+    "t \<rightarrow>\<^sub>\<beta>\<^sup>* t' ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s \<degree> t'"
+  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+
+
+lemma rtrancl_beta_App [intro]:
+    "[| s \<rightarrow>\<^sub>\<beta>\<^sup>* s'; t \<rightarrow>\<^sub>\<beta>\<^sup>* t' |] ==> s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s' \<degree> t'"
+  by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans)
+
+
+subsection {* Substitution-lemmas *}
+
+lemma subst_eq [simp]: "(Var k)[u/k] = u"
+  by (simp add: subst_Var)
+
+lemma subst_gt [simp]: "i < j ==> (Var j)[u/i] = Var (j - 1)"
+  by (simp add: subst_Var)
+
+lemma subst_lt [simp]: "j < i ==> (Var j)[u/i] = Var j"
+  by (simp add: subst_Var)
+
+lemma lift_lift:
+    "i < k + 1 \<Longrightarrow> lift (lift t i) (Suc k) = lift (lift t k) i"
+  by (induct t arbitrary: i k) auto
+
+lemma lift_subst [simp]:
+    "j < i + 1 \<Longrightarrow> lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]"
+  by (induct t arbitrary: i j s)
+    (simp_all add: diff_Suc subst_Var lift_lift split: nat.split)
+
+lemma lift_subst_lt:
+    "i < j + 1 \<Longrightarrow> lift (t[s/j]) i = (lift t i) [lift s i / j + 1]"
+  by (induct t arbitrary: i j s) (simp_all add: subst_Var lift_lift)
+
+lemma subst_lift [simp]:
+    "(lift t k)[s/k] = t"
+  by (induct t arbitrary: k s) simp_all
+
+lemma subst_subst:
+    "i < j + 1 \<Longrightarrow> t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]"
+  by (induct t arbitrary: i j u v)
+    (simp_all add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt
+      split: nat.split)
+
+
+subsection {* Equivalence proof for optimized substitution *}
+
+lemma liftn_0 [simp]: "liftn 0 t k = t"
+  by (induct t arbitrary: k) (simp_all add: subst_Var)
+
+lemma liftn_lift [simp]: "liftn (Suc n) t k = lift (liftn n t k) k"
+  by (induct t arbitrary: k) (simp_all add: subst_Var)
+
+lemma substn_subst_n [simp]: "substn t s n = t[liftn n s 0 / n]"
+  by (induct t arbitrary: n) (simp_all add: subst_Var)
+
+theorem substn_subst_0: "substn t s 0 = t[s/0]"
+  by simp
+
+
+subsection {* Preservation theorems *}
+
+text {* Not used in Church-Rosser proof, but in Strong
+  Normalization. \medskip *}
+
+theorem subst_preserves_beta [simp]:
+    "r \<rightarrow>\<^sub>\<beta> s ==> r[t/i] \<rightarrow>\<^sub>\<beta> s[t/i]"
+  by (induct arbitrary: t i set: beta) (simp_all add: subst_subst [symmetric])
+
+theorem subst_preserves_beta': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> r[t/i] \<rightarrow>\<^sub>\<beta>\<^sup>* s[t/i]"
+  apply (induct set: rtranclp)
+   apply (rule rtranclp.rtrancl_refl)
+  apply (erule rtranclp.rtrancl_into_rtrancl)
+  apply (erule subst_preserves_beta)
+  done
+
+theorem lift_preserves_beta [simp]:
+    "r \<rightarrow>\<^sub>\<beta> s ==> lift r i \<rightarrow>\<^sub>\<beta> lift s i"
+  by (induct arbitrary: i set: beta) auto
+
+theorem lift_preserves_beta': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> lift r i \<rightarrow>\<^sub>\<beta>\<^sup>* lift s i"
+  apply (induct set: rtranclp)
+   apply (rule rtranclp.rtrancl_refl)
+  apply (erule rtranclp.rtrancl_into_rtrancl)
+  apply (erule lift_preserves_beta)
+  done
+
+theorem subst_preserves_beta2 [simp]: "r \<rightarrow>\<^sub>\<beta> s ==> t[r/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t[s/i]"
+  apply (induct t arbitrary: r s i)
+    apply (simp add: subst_Var r_into_rtranclp)
+   apply (simp add: rtrancl_beta_App)
+  apply (simp add: rtrancl_beta_Abs)
+  done
+
+theorem subst_preserves_beta2': "r \<rightarrow>\<^sub>\<beta>\<^sup>* s ==> t[r/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t[s/i]"
+  apply (induct set: rtranclp)
+   apply (rule rtranclp.rtrancl_refl)
+  apply (erule rtranclp_trans)
+  apply (erule subst_preserves_beta2)
+  done
+
+end