--- a/src/HOL/Analysis/Brouwer_Fixpoint.thy Sun Oct 16 22:43:51 2016 +0200
+++ b/src/HOL/Analysis/Brouwer_Fixpoint.thy Mon Oct 17 11:46:22 2016 +0200
@@ -52,13 +52,13 @@
lemmas Zero_notin_Suc = zero_notin_Suc_image
lemmas atMost_Suc_eq_insert_0 = Iic_Suc_eq_insert_0
-lemma setsum_union_disjoint':
+lemma sum_union_disjoint':
assumes "finite A"
and "finite B"
and "A \<inter> B = {}"
and "A \<union> B = C"
- shows "setsum g C = setsum g A + setsum g B"
- using setsum.union_disjoint[OF assms(1-3)] and assms(4) by auto
+ shows "sum g C = sum g A + sum g B"
+ using sum.union_disjoint[OF assms(1-3)] and assms(4) by auto
lemma pointwise_minimal_pointwise_maximal:
fixes s :: "(nat \<Rightarrow> nat) set"
@@ -139,19 +139,19 @@
shows "odd (card {s\<in>S. compo s})"
proof -
have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + (\<Sum>s | s \<in> S \<and> compo s. nF s) = (\<Sum>s\<in>S. nF s)"
- by (subst setsum.union_disjoint[symmetric]) (auto intro!: setsum.cong)
+ by (subst sum.union_disjoint[symmetric]) (auto intro!: sum.cong)
also have "\<dots> = (\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> bnd f}. face f s}) +
(\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> \<not> bnd f}. face f s})"
- unfolding setsum.distrib[symmetric]
+ unfolding sum.distrib[symmetric]
by (subst card_Un_disjoint[symmetric])
- (auto simp: nF_def intro!: setsum.cong arg_cong[where f=card])
+ (auto simp: nF_def intro!: sum.cong arg_cong[where f=card])
also have "\<dots> = 1 * card {f\<in>F. compo' f \<and> bnd f} + 2 * card {f\<in>F. compo' f \<and> \<not> bnd f}"
- using assms(4,5) by (fastforce intro!: arg_cong2[where f="op +"] setsum_multicount)
+ using assms(4,5) by (fastforce intro!: arg_cong2[where f="op +"] sum_multicount)
finally have "odd ((\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + card {s\<in>S. compo s})"
using assms(6,8) by simp
moreover have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) =
(\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 0. nF s) + (\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 2. nF s)"
- using assms(7) by (subst setsum.union_disjoint[symmetric]) (fastforce intro!: setsum.cong)+
+ using assms(7) by (subst sum.union_disjoint[symmetric]) (fastforce intro!: sum.cong)+
ultimately show ?thesis
by auto
qed
@@ -1417,9 +1417,9 @@
fix y :: 'a assume y: "y \<in> unit_cube"
have "dist 0 y = norm y" by (rule dist_0_norm)
also have "\<dots> = norm (\<Sum>i\<in>Basis. (y \<bullet> i) *\<^sub>R i)" unfolding euclidean_representation ..
- also have "\<dots> \<le> (\<Sum>i\<in>Basis. norm ((y \<bullet> i) *\<^sub>R i))" by (rule norm_setsum)
+ also have "\<dots> \<le> (\<Sum>i\<in>Basis. norm ((y \<bullet> i) *\<^sub>R i))" by (rule norm_sum)
also have "\<dots> \<le> (\<Sum>i::'a\<in>Basis. 1)"
- by (rule setsum_mono, simp add: y [unfolded mem_unit_cube])
+ by (rule sum_mono, simp add: y [unfolded mem_unit_cube])
finally show "dist 0 y \<le> (\<Sum>i::'a\<in>Basis. 1)" .
qed
@@ -1679,7 +1679,7 @@
unfolding inner_diff_left[symmetric]
by (rule norm_le_l1)
also have "\<dots> < (\<Sum>(i::'a) \<in> Basis. d / real n)"
- apply (rule setsum_strict_mono)
+ apply (rule sum_strict_mono)
using as
apply auto
done
@@ -1731,7 +1731,7 @@
by auto
{
have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
- apply (rule setsum_mono)
+ apply (rule sum_mono)
using rs(1)[OF b'_im]
apply (auto simp add:* field_simps simp del: of_nat_Suc)
done
@@ -1743,7 +1743,7 @@
moreover
{
have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
- apply (rule setsum_mono)
+ apply (rule sum_mono)
using rs(2)[OF b'_im]
apply (auto simp add:* field_simps simp del: of_nat_Suc)
done
@@ -1757,7 +1757,7 @@
unfolding r'_def s'_def z_def
using \<open>p > 0\<close>
apply (rule_tac[!] le_less_trans[OF norm_le_l1])
- apply (auto simp add: field_simps setsum_divide_distrib[symmetric] inner_diff_left)
+ apply (auto simp add: field_simps sum_divide_distrib[symmetric] inner_diff_left)
done
then have "\<bar>(f z - z) \<bullet> i\<bar> < d / real n"
using rs(3) i