src/HOL/Inequalities.thy
changeset 64267 b9a1486e79be
parent 63918 6bf55e6e0b75
child 66804 3f9bb52082c4
--- a/src/HOL/Inequalities.thy	Sun Oct 16 22:43:51 2016 +0200
+++ b/src/HOL/Inequalities.thy	Mon Oct 17 11:46:22 2016 +0200
@@ -7,7 +7,7 @@
   imports Real_Vector_Spaces
 begin
 
-lemma Setsum_Icc_int: "(m::int) \<le> n \<Longrightarrow> \<Sum> {m..n} = (n*(n+1) - m*(m-1)) div 2"
+lemma Sum_Icc_int: "(m::int) \<le> n \<Longrightarrow> \<Sum> {m..n} = (n*(n+1) - m*(m-1)) div 2"
 proof(induct i == "nat(n-m)" arbitrary: m n)
   case 0
   hence "m = n" by arith
@@ -25,26 +25,26 @@
   finally show ?case .
 qed
 
-lemma Setsum_Icc_nat: assumes "(m::nat) \<le> n"
+lemma Sum_Icc_nat: assumes "(m::nat) \<le> n"
 shows "\<Sum> {m..n} = (n*(n+1) - m*(m-1)) div 2"
 proof -
   have "m*(m-1) \<le> n*(n + 1)"
    using assms by (meson diff_le_self order_trans le_add1 mult_le_mono)
   hence "int(\<Sum> {m..n}) = int((n*(n+1) - m*(m-1)) div 2)" using assms
-    by (auto simp: Setsum_Icc_int[transferred, OF assms] zdiv_int of_nat_mult simp del: of_nat_setsum
+    by (auto simp: Sum_Icc_int[transferred, OF assms] zdiv_int of_nat_mult simp del: of_nat_sum
           split: zdiff_int_split)
   thus ?thesis
     using of_nat_eq_iff by blast
 qed
 
-lemma Setsum_Ico_nat: assumes "(m::nat) \<le> n"
+lemma Sum_Ico_nat: assumes "(m::nat) \<le> n"
 shows "\<Sum> {m..<n} = (n*(n-1) - m*(m-1)) div 2"
 proof cases
   assume "m < n"
   hence "{m..<n} = {m..n-1}" by auto
   hence "\<Sum>{m..<n} = \<Sum>{m..n-1}" by simp
   also have "\<dots> = (n*(n-1) - m*(m-1)) div 2"
-    using assms \<open>m < n\<close> by (simp add: Setsum_Icc_nat mult.commute)
+    using assms \<open>m < n\<close> by (simp add: Sum_Icc_nat mult.commute)
   finally show ?thesis .
 next
   assume "\<not> m < n" with assms show ?thesis by simp
@@ -59,13 +59,13 @@
   let ?S = "(\<Sum>j=0..<n. (\<Sum>k=0..<n. (a j - a k) * (b j - b k)))"
   have "2 * (of_nat n * (\<Sum>j=0..<n. (a j * b j)) - (\<Sum>j=0..<n. b j) * (\<Sum>k=0..<n. a k)) = ?S"
     by (simp only: one_add_one[symmetric] algebra_simps)
-      (simp add: algebra_simps setsum_subtractf setsum.distrib setsum.commute[of "\<lambda>i j. a i * b j"] setsum_distrib_left)
+      (simp add: algebra_simps sum_subtractf sum.distrib sum.commute[of "\<lambda>i j. a i * b j"] sum_distrib_left)
   also
   { fix i j::nat assume "i<n" "j<n"
     hence "a i - a j \<le> 0 \<and> b i - b j \<ge> 0 \<or> a i - a j \<ge> 0 \<and> b i - b j \<le> 0"
       using assms by (cases "i \<le> j") (auto simp: algebra_simps)
   } then have "?S \<le> 0"
-    by (auto intro!: setsum_nonpos simp: mult_le_0_iff)
+    by (auto intro!: sum_nonpos simp: mult_le_0_iff)
   finally show ?thesis by (simp add: algebra_simps)
 qed
 
@@ -75,6 +75,6 @@
          (\<And>i j. \<lbrakk> i\<le>j; j<n \<rbrakk> \<Longrightarrow> b i \<ge> b j) \<Longrightarrow>
     n * (\<Sum>i=0..<n. a i * b i) \<le> (\<Sum>i=0..<n. a i) * (\<Sum>i=0..<n. b i)"
 using Chebyshev_sum_upper[where 'a=real, of n a b]
-by (simp del: of_nat_mult of_nat_setsum  add: of_nat_mult[symmetric] of_nat_setsum[symmetric])
+by (simp del: of_nat_mult of_nat_sum  add: of_nat_mult[symmetric] of_nat_sum[symmetric])
 
 end