src/HOL/Int.thy
changeset 64267 b9a1486e79be
parent 64014 ca1239a3277b
child 64272 f76b6dda2e56
--- a/src/HOL/Int.thy	Sun Oct 16 22:43:51 2016 +0200
+++ b/src/HOL/Int.thy	Mon Oct 17 11:46:22 2016 +0200
@@ -866,12 +866,12 @@
 qed
 
 
-subsection \<open>@{term setsum} and @{term setprod}\<close>
+subsection \<open>@{term sum} and @{term setprod}\<close>
 
-lemma of_nat_setsum [simp]: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
+lemma of_nat_sum [simp]: "of_nat (sum f A) = (\<Sum>x\<in>A. of_nat(f x))"
   by (induct A rule: infinite_finite_induct) auto
 
-lemma of_int_setsum [simp]: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
+lemma of_int_sum [simp]: "of_int (sum f A) = (\<Sum>x\<in>A. of_int(f x))"
   by (induct A rule: infinite_finite_induct) auto
 
 lemma of_nat_setprod [simp]: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
@@ -880,7 +880,7 @@
 lemma of_int_setprod [simp]: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
   by (induct A rule: infinite_finite_induct) auto
 
-lemmas int_setsum = of_nat_setsum [where 'a=int]
+lemmas int_sum = of_nat_sum [where 'a=int]
 lemmas int_setprod = of_nat_setprod [where 'a=int]