src/HOL/Binomial.thy
changeset 67299 ba52a058942f
parent 66806 a4e82b58d833
child 67399 eab6ce8368fa
--- a/src/HOL/Binomial.thy	Fri Dec 29 18:09:38 2017 +0100
+++ b/src/HOL/Binomial.thy	Fri Dec 29 19:17:52 2017 +0100
@@ -708,7 +708,7 @@
   using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric])
 
 
-text \<open>The absorption identity (equation 5.5 \cite[p.~157]{GKP}):
+text \<open>The absorption identity (equation 5.5 @{cite \<open>p.~157\<close> GKP_CM}):
 \[
 {r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.
 \]\<close>
@@ -718,7 +718,7 @@
 
 text \<open>The absorption identity is written in the following form to avoid
 division by $k$ (the lower index) and therefore remove the $k \neq 0$
-restriction\cite[p.~157]{GKP}:
+restriction @{cite \<open>p.~157\<close> GKP_CM}:
 \[
 k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.
 \]\<close>
@@ -730,7 +730,7 @@
   by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc)
 
 text \<open>The absorption companion identity for natural number coefficients,
-  following the proof by GKP \cite[p.~157]{GKP}:\<close>
+  following the proof by GKP @{cite \<open>p.~157\<close> GKP_CM}:\<close>
 lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)"
   (is "?lhs = ?rhs")
 proof (cases "n \<le> k")
@@ -761,7 +761,7 @@
   by (subst choose_reduce_nat) simp_all
 
 text \<open>
-  Equation 5.9 of the reference material \cite[p.~159]{GKP} is a useful
+  Equation 5.9 of the reference material @{cite \<open>p.~159\<close> GKP_CM} is a useful
   summation formula, operating on both indices:
   \[
    \sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n},
@@ -783,7 +783,7 @@
 subsubsection \<open>Summation on the upper index\<close>
 
 text \<open>
-  Another summation formula is equation 5.10 of the reference material \cite[p.~160]{GKP},
+  Another summation formula is equation 5.10 of the reference material @{cite \<open>p.~160\<close> GKP_CM},
   aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} =
   {n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]
 \<close>