src/ZF/pair.thy
changeset 13240 bb5f4faea1f3
parent 11694 4c6e9d800628
child 13357 6f54e992777e
--- a/src/ZF/pair.thy	Sat Jun 22 18:28:46 2002 +0200
+++ b/src/ZF/pair.thy	Sun Jun 23 10:14:13 2002 +0200
@@ -1,5 +1,189 @@
+(*  Title:      ZF/pair
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+Ordered pairs in Zermelo-Fraenkel Set Theory 
+*)
+
 theory pair = upair
 files "simpdata.ML":
+
+(** Lemmas for showing that <a,b> uniquely determines a and b **)
+
+lemma singleton_eq_iff [iff]: "{a} = {b} <-> a=b"
+by (rule extension [THEN iff_trans], blast)
+
+lemma doubleton_eq_iff: "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
+by (rule extension [THEN iff_trans], blast)
+
+lemma Pair_iff [simp]: "<a,b> = <c,d> <-> a=c & b=d"
+by (simp add: Pair_def doubleton_eq_iff, blast)
+
+lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, standard, elim!]
+
+lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1, standard]
+lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2, standard]
+
+lemma Pair_not_0: "<a,b> ~= 0"
+apply (unfold Pair_def)
+apply (blast elim: equalityE)
+done
+
+lemmas Pair_neq_0 = Pair_not_0 [THEN notE, standard, elim!]
+
+declare sym [THEN Pair_neq_0, elim!]
+
+lemma Pair_neq_fst: "<a,b>=a ==> P"
+apply (unfold Pair_def)
+apply (rule consI1 [THEN mem_asym, THEN FalseE])
+apply (erule subst)
+apply (rule consI1)
+done
+
+lemma Pair_neq_snd: "<a,b>=b ==> P"
+apply (unfold Pair_def)
+apply (rule consI1 [THEN consI2, THEN mem_asym, THEN FalseE])
+apply (erule subst)
+apply (rule consI1 [THEN consI2])
+done
+
+
+(*** Sigma: Disjoint union of a family of sets
+     Generalizes Cartesian product ***)
+
+lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) <-> a:A & b:B(a)"
+by (simp add: Sigma_def)
+
+lemma SigmaI [TC,intro!]: "[| a:A;  b:B(a) |] ==> <a,b> : Sigma(A,B)"
+by simp
+
+lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1, standard]
+lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2, standard]
+
+(*The general elimination rule*)
+lemma SigmaE [elim!]:
+    "[| c: Sigma(A,B);   
+        !!x y.[| x:A;  y:B(x);  c=<x,y> |] ==> P  
+     |] ==> P"
+apply (unfold Sigma_def, blast) 
+done
+
+lemma SigmaE2 [elim!]:
+    "[| <a,b> : Sigma(A,B);     
+        [| a:A;  b:B(a) |] ==> P    
+     |] ==> P"
+apply (unfold Sigma_def, blast) 
+done
+
+lemma Sigma_cong:
+    "[| A=A';  !!x. x:A' ==> B(x)=B'(x) |] ==>  
+     Sigma(A,B) = Sigma(A',B')"
+by (simp add: Sigma_def)
+
+(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
+  flex-flex pairs and the "Check your prover" error.  Most
+  Sigmas and Pis are abbreviated as * or -> *)
+
+lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"
+by blast
+
+lemma Sigma_empty2 [simp]: "A*0 = 0"
+by blast
+
+lemma Sigma_empty_iff: "A*B=0 <-> A=0 | B=0"
+by blast
+
+
+(*** Projections: fst, snd ***)
+
+lemma fst_conv [simp]: "fst(<a,b>) = a"
+by (simp add: fst_def, blast)
+
+lemma snd_conv [simp]: "snd(<a,b>) = b"
+by (simp add: snd_def, blast)
+
+lemma fst_type [TC]: "p:Sigma(A,B) ==> fst(p) : A"
+by auto
+
+lemma snd_type [TC]: "p:Sigma(A,B) ==> snd(p) : B(fst(p))"
+by auto
+
+lemma Pair_fst_snd_eq: "a: Sigma(A,B) ==> <fst(a),snd(a)> = a"
+by auto
+
+
+(*** Eliminator - split ***)
+
+(*A META-equality, so that it applies to higher types as well...*)
+lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"
+by (simp add: split_def)
+
+lemma split_type [TC]:
+    "[|  p:Sigma(A,B);    
+         !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>)  
+     |] ==> split(%x y. c(x,y), p) : C(p)"
+apply (erule SigmaE, auto) 
+done
+
+lemma expand_split: 
+  "u: A*B ==>    
+        R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))"
+apply (simp add: split_def, auto)
+done
+
+
+(*** split for predicates: result type o ***)
+
+lemma splitI: "R(a,b) ==> split(R, <a,b>)"
+by (simp add: split_def)
+
+lemma splitE:
+    "[| split(R,z);  z:Sigma(A,B);                       
+        !!x y. [| z = <x,y>;  R(x,y) |] ==> P            
+     |] ==> P"
+apply (simp add: split_def)
+apply (erule SigmaE, force) 
+done
+
+lemma splitD: "split(R,<a,b>) ==> R(a,b)"
+by (simp add: split_def)
+
+ML
+{*
+val singleton_eq_iff = thm "singleton_eq_iff";
+val doubleton_eq_iff = thm "doubleton_eq_iff";
+val Pair_iff = thm "Pair_iff";
+val Pair_inject = thm "Pair_inject";
+val Pair_inject1 = thm "Pair_inject1";
+val Pair_inject2 = thm "Pair_inject2";
+val Pair_not_0 = thm "Pair_not_0";
+val Pair_neq_0 = thm "Pair_neq_0";
+val Pair_neq_fst = thm "Pair_neq_fst";
+val Pair_neq_snd = thm "Pair_neq_snd";
+val Sigma_iff = thm "Sigma_iff";
+val SigmaI = thm "SigmaI";
+val SigmaD1 = thm "SigmaD1";
+val SigmaD2 = thm "SigmaD2";
+val SigmaE = thm "SigmaE";
+val SigmaE2 = thm "SigmaE2";
+val Sigma_cong = thm "Sigma_cong";
+val Sigma_empty1 = thm "Sigma_empty1";
+val Sigma_empty2 = thm "Sigma_empty2";
+val Sigma_empty_iff = thm "Sigma_empty_iff";
+val fst_conv = thm "fst_conv";
+val snd_conv = thm "snd_conv";
+val fst_type = thm "fst_type";
+val snd_type = thm "snd_type";
+val Pair_fst_snd_eq = thm "Pair_fst_snd_eq";
+val split = thm "split";
+val split_type = thm "split_type";
+val expand_split = thm "expand_split";
+val splitI = thm "splitI";
+val splitE = thm "splitE";
+val splitD = thm "splitD";
+*}
+
 end