--- a/doc-src/TutorialI/Overview/Ind.thy Mon Jul 01 12:50:35 2002 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-(*<*)theory Ind = Main:(*>*)
-
-section{*Inductive Definitions*}
-
-
-subsection{*Even Numbers*}
-
-subsubsection{*The Definition*}
-
-consts even :: "nat set"
-inductive even
-intros
-zero[intro!]: "0 \<in> even"
-step[intro!]: "n \<in> even \<Longrightarrow> Suc(Suc n) \<in> even"
-
-lemma [simp,intro!]: "2 dvd n \<Longrightarrow> 2 dvd Suc(Suc n)"
-apply (unfold dvd_def)
-apply clarify
-apply (rule_tac x = "Suc k" in exI, simp)
-done
-
-subsubsection{*Rule Induction*}
-
-text{* Rule induction for set @{term even}, @{thm[source]even.induct}:
-@{thm[display] even.induct[no_vars]}*}
-(*<*)thm even.induct[no_vars](*>*)
-
-lemma even_imp_dvd: "n \<in> even \<Longrightarrow> 2 dvd n"
-apply (erule even.induct)
-apply simp_all
-done
-
-subsubsection{*Rule Inversion*}
-
-inductive_cases Suc_Suc_case [elim!]: "Suc(Suc n) \<in> even"
-text{* @{thm[display] Suc_Suc_case[no_vars]} *}
-(*<*)thm Suc_Suc_case(*>*)
-
-lemma "Suc(Suc n) \<in> even \<Longrightarrow> n \<in> even"
-by blast
-
-
-subsection{*Mutually Inductive Definitions*}
-
-consts evn :: "nat set"
- odd :: "nat set"
-
-inductive evn odd
-intros
-zero: "0 \<in> evn"
-evnI: "n \<in> odd \<Longrightarrow> Suc n \<in> evn"
-oddI: "n \<in> evn \<Longrightarrow> Suc n \<in> odd"
-
-lemma "(m \<in> evn \<longrightarrow> 2 dvd m) \<and> (n \<in> odd \<longrightarrow> 2 dvd (Suc n))"
-apply(rule evn_odd.induct)
-by simp_all
-
-
-subsection{*The Reflexive Transitive Closure*}
-
-consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set" ("_*" [1000] 999)
-inductive "r*"
-intros
-rtc_refl[iff]: "(x,x) \<in> r*"
-rtc_step: "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
-
-lemma [intro]: "(x,y) : r \<Longrightarrow> (x,y) \<in> r*"
-by(blast intro: rtc_step);
-
-lemma rtc_trans: "\<lbrakk> (x,y) \<in> r*; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
-apply(erule rtc.induct)
-oops
-
-lemma rtc_trans[rule_format]:
- "(x,y) \<in> r* \<Longrightarrow> (y,z) \<in> r* \<longrightarrow> (x,z) \<in> r*"
-apply(erule rtc.induct)
- apply(blast);
-apply(blast intro: rtc_step);
-done
-
-text{*
-\begin{exercise}
-Show that the converse of @{thm[source]rtc_step} also holds:
-@{prop[display]"[| (x,y) : r*; (y,z) : r |] ==> (x,z) : r*"}
-\end{exercise}*}
-
-subsection{*The accessible part of a relation*}
-
-consts acc :: "('a \<times> 'a) set \<Rightarrow> 'a set"
-inductive "acc r"
-intros
- "(\<forall>y. (y,x) \<in> r \<longrightarrow> y \<in> acc r) \<Longrightarrow> x \<in> acc r"
-
-lemma "wf{(x,y). (x,y) \<in> r \<and> y \<in> acc r}"
-thm wfI
-apply(rule_tac A = "acc r" in wfI)
- apply (blast elim: acc.elims)
-apply(simp(no_asm_use))
-thm acc.induct
-apply(erule acc.induct)
-by blast
-
-consts accs :: "('a \<times> 'a) set \<Rightarrow> 'a set"
-inductive "accs r"
-intros
- "r``{x} \<in> Pow(accs r) \<Longrightarrow> x \<in> accs r"
-monos Pow_mono
-
-(*<*)end(*>*)