--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Overview/LNCS/FP0.thy Mon Jul 01 15:33:03 2002 +0200
@@ -0,0 +1,31 @@
+theory FP0 = PreList:
+
+datatype 'a list = Nil ("[]")
+ | Cons 'a "'a list" (infixr "#" 65)
+
+consts app :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65)
+ rev :: "'a list \<Rightarrow> 'a list"
+
+primrec
+"[] @ ys = ys"
+"(x # xs) @ ys = x # (xs @ ys)"
+
+primrec
+"rev [] = []"
+"rev (x # xs) = (rev xs) @ (x # [])"
+
+theorem rev_rev [simp]: "rev(rev xs) = xs"
+(*<*)oops(*>*)
+
+text{*
+\begin{exercise}
+Define a datatype of binary trees and a function @{term mirror}
+that mirrors a binary tree by swapping subtrees recursively. Prove
+@{prop"mirror(mirror t) = t"}.
+
+Define a function @{term flatten} that flattens a tree into a list
+by traversing it in infix order. Prove
+@{prop"flatten(mirror t) = rev(flatten t)"}.
+\end{exercise}
+*}
+end