doc-src/TutorialI/Overview/Rules.thy
changeset 13262 bbfc360db011
parent 13261 a0460a450cf9
child 13263 203c5f789c09
--- a/doc-src/TutorialI/Overview/Rules.thy	Mon Jul 01 12:50:35 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,184 +0,0 @@
-(*<*)theory Rules = Main:(*>*)
-
-section{*The Rules of the Game*}
-
-
-subsection{*Introduction Rules*}
-
-text{* Introduction rules for propositional logic:
-\begin{center}
-\begin{tabular}{ll}
-@{thm[source]impI} & @{thm impI[no_vars]} \\
-@{thm[source]conjI} & @{thm conjI[no_vars]} \\
-@{thm[source]disjI1} & @{thm disjI1[no_vars]} \\
-@{thm[source]disjI2} & @{thm disjI2[no_vars]} \\
-@{thm[source]iffI} & @{thm iffI[no_vars]}
-\end{tabular}
-\end{center}
-*}
-
-(*<*)thm impI conjI disjI1 disjI2 iffI(*>*)
-
-lemma "A \<Longrightarrow> B \<longrightarrow> A \<and> (B \<and> A)"
-apply(rule impI)
-apply(rule conjI)
- apply assumption
-apply(rule conjI)
- apply assumption
-apply assumption
-done
-
-
-subsection{*Elimination Rules*}
-
-text{* Elimination rules for propositional logic:
-\begin{center}
-\begin{tabular}{ll}
-@{thm[source]impE} & @{thm impE[no_vars]} \\
-@{thm[source]mp} & @{thm mp[no_vars]} \\
-@{thm[source]conjE} & @{thm conjE[no_vars]} \\
-@{thm[source]disjE} & @{thm disjE[no_vars]}
-\end{tabular}
-\end{center}
-*}
-(*<*)
-thm impE mp
-thm conjE
-thm disjE
-(*>*)
-lemma disj_swap: "P \<or> Q \<Longrightarrow> Q \<or> P"
-apply (erule disjE)
- apply (rule disjI2)
- apply assumption
-apply (rule disjI1)
-apply assumption
-done
-
-
-subsection{*Destruction Rules*}
-
-text{* Destruction rules for propositional logic:
-\begin{center}
-\begin{tabular}{ll}
-@{thm[source]conjunct1} & @{thm conjunct1[no_vars]} \\
-@{thm[source]conjunct2} & @{thm conjunct2[no_vars]} \\
-@{thm[source]iffD1} & @{thm iffD1[no_vars]} \\
-@{thm[source]iffD2} & @{thm iffD2[no_vars]}
-\end{tabular}
-\end{center}
-*}
-
-(*<*)thm conjunct1 conjunct1 iffD1 iffD2(*>*)
-
-lemma conj_swap: "P \<and> Q \<Longrightarrow> Q \<and> P"
-apply (rule conjI)
- apply (drule conjunct2)
- apply assumption
-apply (drule conjunct1)
-apply assumption
-done
-
-
-subsection{*Quantifiers*}
-
-text{* Quantifier rules:
-\begin{center}
-\begin{tabular}{ll}
-@{thm[source]allI} & @{thm allI[no_vars]} \\
-@{thm[source]exI} & @{thm exI[no_vars]} \\
-@{thm[source]allE} & @{thm allE[no_vars]} \\
-@{thm[source]exE} & @{thm exE[no_vars]} \\
-@{thm[source]spec} & @{thm spec[no_vars]}
-\end{tabular}
-\end{center}
-*}
-(*<*)
-thm allI exI
-thm allE exE
-thm spec
-(*>*)
-lemma "\<exists>x.\<forall>y. P x y \<Longrightarrow> \<forall>y.\<exists>x. P x y"
-(*<*)oops(*>*)
-
-subsection{*Instantiation*}
-
-lemma "\<exists>xs. xs @ xs = xs"
-apply(rule_tac x = "[]" in exI)
-by simp
-
-lemma "\<forall>xs. f(xs @ xs) = xs \<Longrightarrow> f [] = []"
-apply(erule_tac x = "[]" in allE)
-by simp
-
-
-subsection{*Automation*}
-
-lemma "(\<forall>x. honest(x) \<and> industrious(x) \<longrightarrow> healthy(x)) \<and>  
-       \<not> (\<exists>x. grocer(x) \<and> healthy(x)) \<and> 
-       (\<forall>x. industrious(x) \<and> grocer(x) \<longrightarrow> honest(x)) \<and> 
-       (\<forall>x. cyclist(x) \<longrightarrow> industrious(x)) \<and> 
-       (\<forall>x. \<not>healthy(x) \<and> cyclist(x) \<longrightarrow> \<not>honest(x))  
-       \<longrightarrow> (\<forall>x. grocer(x) \<longrightarrow> \<not>cyclist(x))";
-by blast
-
-lemma "(\<Union>i\<in>I. A(i)) \<inter> (\<Union>j\<in>J. B(j)) =
-       (\<Union>i\<in>I. \<Union>j\<in>J. A(i) \<inter> B(j))"
-by fast
-
-lemma "\<exists>x.\<forall>y. P x y \<Longrightarrow> \<forall>y.\<exists>x. P x y"
-apply(clarify)
-by blast
-
-
-subsection{*Forward Proof*}
-
-text{*
-Instantiation of unknowns (in left-to-right order):
-\begin{center}
-\begin{tabular}{@ {}ll@ {}}
-@{thm[source]append_self_conv} & @{thm append_self_conv} \\
-@{thm[source]append_self_conv[of _ "[]"]} & @{thm append_self_conv[of _ "[]"]}
-\end{tabular}
-\end{center}
-Applying one theorem to another
-by unifying the premise of one theorem with the conclusion of another:
-\begin{center}
-\begin{tabular}{@ {}ll@ {}}
-@{thm[source]sym} & @{thm sym} \\
-@{thm[source]sym[OF append_self_conv]} & @{thm sym[OF append_self_conv]}\\
-@{thm[source]append_self_conv[THEN sym]} & @{thm append_self_conv[THEN sym]}
-\end{tabular}
-\end{center}
-*}
-(*<*)
-thm append_self_conv
-thm append_self_conv[of _ "[]"]
-thm sym
-thm sym[OF append_self_conv]
-thm append_self_conv[THEN sym]
-(*>*)
-subsection{*Further Useful Methods*}
-
-lemma "n \<le> 1 \<and> n \<noteq> 0 \<Longrightarrow> n^n = n"
-apply(subgoal_tac "n=1")
- apply simp
-apply arith
-done
-
-text{* And a cute example: *}
-lemma "\<lbrakk> 2 \<in> Q; sqrt 2 \<notin> Q;
-         \<forall>x y z. sqrt x * sqrt x = x \<and>
-                  x ^ 2 = x * x \<and>
-                 (x ^ y) ^ z = x ^ (y*z)
-       \<rbrakk> \<Longrightarrow> \<exists>a b. a \<notin> Q \<and> b \<notin> Q \<and> a ^ b \<in> Q"
-(*
-apply(case_tac "")
- apply blast
-apply(rule_tac x = "" in exI)
-apply(rule_tac x = "" in exI)
-apply simp
-done
-*)
-(*<*)oops
-
-end(*>*)