--- a/src/HOL/Analysis/Great_Picard.thy Sun Sep 17 21:04:02 2017 +0200
+++ b/src/HOL/Analysis/Great_Picard.thy Tue Sep 19 16:37:19 2017 +0100
@@ -1000,7 +1000,7 @@
and holf: "\<And>n::nat. \<F> n holomorphic_on S"
and holg: "g holomorphic_on S"
and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially"
- and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c"
+ and nonconst: "~ g constant_on S"
and nz: "\<And>n z. z \<in> S \<Longrightarrow> \<F> n z \<noteq> 0"
and "z0 \<in> S"
shows "g z0 \<noteq> 0"
@@ -1164,14 +1164,14 @@
and holf: "\<And>n::nat. \<F> n holomorphic_on S"
and holg: "g holomorphic_on S"
and ul_g: "\<And>K. \<lbrakk>compact K; K \<subseteq> S\<rbrakk> \<Longrightarrow> uniform_limit K \<F> g sequentially"
- and nonconst: "\<And>c. \<exists>z \<in> S. g z \<noteq> c"
+ and nonconst: "~ g constant_on S"
and inj: "\<And>n. inj_on (\<F> n) S"
shows "inj_on g S"
proof -
have False if z12: "z1 \<in> S" "z2 \<in> S" "z1 \<noteq> z2" "g z2 = g z1" for z1 z2
proof -
obtain z0 where "z0 \<in> S" and z0: "g z0 \<noteq> g z2"
- using nonconst by blast
+ using constant_on_def nonconst by blast
have "(\<lambda>z. g z - g z1) holomorphic_on S"
by (intro holomorphic_intros holg)
then obtain r where "0 < r" "ball z2 r \<subseteq> S" "\<And>z. dist z2 z < r \<and> z \<noteq> z2 \<Longrightarrow> g z \<noteq> g z1"
@@ -1214,7 +1214,8 @@
show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>K. dist (\<F> n x - \<F> n z1) (g x - g z1) < e"
by simp
qed
- show "\<And>c. \<exists>z\<in>S - {z1}. g z - g z1 \<noteq> c"
+ show "\<not> (\<lambda>z. g z - g z1) constant_on S - {z1}"
+ unfolding constant_on_def
by (metis Diff_iff \<open>z0 \<in> S\<close> empty_iff insert_iff right_minus_eq z0 z12)
show "\<And>n z. z \<in> S - {z1} \<Longrightarrow> \<F> n z - \<F> n z1 \<noteq> 0"
by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 \<open>z1 \<in> S\<close>)
@@ -1360,8 +1361,9 @@
using \<open>Z \<subseteq> S\<close> e hol\<G> by force
show "\<And>n z. z \<in> ball v e \<Longrightarrow> (\<G> \<circ> j) n z \<noteq> 0"
using \<G>not0 \<open>Z \<subseteq> S\<close> e by fastforce
- show "\<exists>z\<in>ball v e. h z \<noteq> c" for c
- proof -
+ show "\<not> h constant_on ball v e"
+ proof (clarsimp simp: constant_on_def)
+ fix c
have False if "\<And>z. dist v z < e \<Longrightarrow> h z = c"
proof -
have "h v = c"
@@ -1389,7 +1391,7 @@
show False
using \<open>C < cmod (\<F> (j n) y)\<close> le_C not_less by blast
qed
- then show ?thesis by force
+ then show "\<exists>x\<in>ball v e. h x \<noteq> c" by force
qed
show "h holomorphic_on ball v e"
by (simp add: holh)
@@ -1828,7 +1830,6 @@
by meson
qed
-
corollary Casorati_Weierstrass:
assumes "open M" "z \<in> M" "f holomorphic_on (M - {z})"
and "\<And>l. \<not> (f \<longlongrightarrow> l) (at z)" "\<And>l. \<not> ((inverse \<circ> f) \<longlongrightarrow> l) (at z)"