src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy
changeset 69654 bc758f4f09e5
parent 69546 27dae626822b
child 69661 a03a63b81f44
--- a/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -900,10 +900,6 @@
   "(\<And>x. x \<in> space M =simp=> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v"
   by (auto intro: nn_integral_cong simp: simp_implies_def)
 
-lemma nn_integral_cong_strong:
-  "M = N \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N N v"
-  by (auto intro: nn_integral_cong)
-
 lemma incseq_nn_integral:
   assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>N M (f i))"
 proof -