src/LK/LK.thy
changeset 2085 bcc9cbed10b1
parent 2084 5963238bc1b6
child 2086 80ef03e39058
--- a/src/LK/LK.thy	Thu Oct 10 10:57:33 1996 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,135 +0,0 @@
-(*  Title:      LK/lk.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-Classical First-Order Sequent Calculus
-
-There may be printing problems if a seqent is in expanded normal form
-	(eta-expanded, beta-contracted)
-*)
-
-LK = Pure +
-
-classes term < logic
-
-default term
-
-types
-  o sequence seqobj seqcont sobj
-
-arities
-  o :: logic
-
-consts
-  True,False   :: o
-  "="          :: ['a,'a] => o       (infixl 50)
-  Not          :: o => o             ("~ _" [40] 40)
-  "&"          :: [o,o] => o         (infixr 35)
-  "|"          :: [o,o] => o         (infixr 30)
-  "-->","<->"  :: [o,o] => o         (infixr 25)
-  The          :: ('a => o) => 'a    (binder "THE " 10)
-  All          :: ('a => o) => o     (binder "ALL " 10)
-  Ex           :: ('a => o) => o     (binder "EX " 10)
-
-  (*Representation of sequents*)
-  Trueprop     :: [sobj=>sobj, sobj=>sobj] => prop
-  Seqof        :: [o, sobj] => sobj
-
-syntax
-  "@Trueprop"  :: [sequence,sequence] => prop     ("((_)/ |- (_))" [6,6] 5)
-  NullSeq      :: sequence                        ("" [] 1000)
-  NonNullSeq   :: [seqobj,seqcont] => sequence    ("__" [] 1000)
-  NullSeqCont  :: seqcont                         ("" [] 1000)
-  SeqCont      :: [seqobj,seqcont] => seqcont     (",/ __" [] 1000)
-  ""           :: o => seqobj                     ("_" [] 1000)
-  SeqId        :: id => seqobj                    ("$_" [] 1000)
-  SeqVar       :: var => seqobj                   ("$_")
-
-rules
-  (*Structural rules*)
-
-  basic "$H, P, $G |- $E, P, $F"
-
-  thinR "$H |- $E, $F ==> $H |- $E, P, $F"
-  thinL "$H, $G |- $E ==> $H, P, $G |- $E"
-
-  cut   "[| $H |- $E, P;  $H, P |- $E |] ==> $H |- $E"
-
-  (*Propositional rules*)
-
-  conjR "[| $H|- $E, P, $F;  $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
-  conjL "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
-
-  disjR "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
-  disjL "[| $H, P, $G |- $E;  $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
-
-  impR  "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
-  impL  "[| $H,$G |- $E,P;  $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
-
-  notR  "$H, P |- $E, $F ==> $H |- $E, ~P, $F"
-  notL  "$H, $G |- $E, P ==> $H, ~P, $G |- $E"
-
-  FalseL "$H, False, $G |- $E"
-
-  True_def "True == False-->False"
-  iff_def  "P<->Q == (P-->Q) & (Q-->P)"
-
-  (*Quantifiers*)
-
-  allR  "(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
-  allL  "$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
-
-  exR   "$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
-  exL   "(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
-
-  (*Equality*)
-
-  refl  "$H |- $E, a=a, $F"
-  sym   "$H |- $E, a=b, $F ==> $H |- $E, b=a, $F"
-  trans "[| $H|- $E, a=b, $F;  $H|- $E, b=c, $F |] ==> $H|- $E, a=c, $F"
-
-
-  (*Descriptions*)
-
-  The "[| $H |- $E, P(a), $F;  !!x.$H, P(x) |- $E, x=a, $F |] ==> 
-          $H |- $E, P(THE x.P(x)), $F"
-end
-
-ML
-
-(*Abstract over "sobj" -- representation of a sequence of formulae *)
-fun abs_sobj t = Abs("sobj", Type("sobj",[]), t);
-
-(*Representation of empty sequence*)
-val Sempty =  abs_sobj (Bound 0);
-
-fun seq_obj_tr (Const("SeqId",_)$id) = id
-  | seq_obj_tr (Const("SeqVar",_)$id) = id
-  | seq_obj_tr (fm) = Const("Seqof",dummyT)$fm;
-
-fun seq_tr (_$obj$seq) = seq_obj_tr(obj)$seq_tr(seq)
-  | seq_tr (_) = Bound 0;
-
-fun seq_tr1 (Const("NullSeq",_)) = Sempty
-  | seq_tr1 (seq) = abs_sobj(seq_tr seq);
-
-fun true_tr[s1,s2] = Const("Trueprop",dummyT)$seq_tr1 s1$seq_tr1 s2;
-
-fun seq_obj_tr' (Const("Seqof",_)$fm) = fm
-  | seq_obj_tr' (id) = Const("SeqId",dummyT)$id;
-
-fun seq_tr' (obj$sq,C) =
-      let val sq' = case sq of
-            Bound 0 => Const("NullSeqCont",dummyT)
-  |         _ => seq_tr'(sq,Const("SeqCont",dummyT))
-      in C $ seq_obj_tr' obj $ sq' end;
-
-fun seq_tr1' (Bound 0) = Const("NullSeq",dummyT)
-  | seq_tr1' s = seq_tr'(s,Const("NonNullSeq",dummyT));
-
-fun true_tr' [Abs(_,_,s1),Abs(_,_,s2)] =
-      Const("@Trueprop",dummyT)$seq_tr1' s1$seq_tr1' s2;
-
-val parse_translation = [("@Trueprop",true_tr)];
-val print_translation = [("Trueprop",true_tr')];