src/HOL/Induct/Mutil.thy
changeset 3424 bf466159ef84
parent 3120 c58423c20740
child 5931 325300576da7
     1.1 --- a/src/HOL/Induct/Mutil.thy	Fri Jun 06 10:46:26 1997 +0200
     1.2 +++ b/src/HOL/Induct/Mutil.thy	Fri Jun 06 10:47:16 1997 +0200
     1.3 @@ -1,4 +1,4 @@
     1.4 -(*  Title:      HOL/ex/Mutil
     1.5 +(*  Title:      HOL/Induct/Mutil
     1.6      ID:         $Id$
     1.7      Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     1.8      Copyright   1996  University of Cambridge
     1.9 @@ -11,8 +11,8 @@
    1.10  Mutil = Finite +
    1.11  consts
    1.12    domino  :: "(nat*nat)set set"
    1.13 -  tiling  :: 'a set set => 'a set set
    1.14 -  below   :: nat => nat set
    1.15 +  tiling  :: "'a set set => 'a set set"
    1.16 +  below   :: "nat => nat set"
    1.17    evnodd  :: "[(nat*nat)set, nat] => (nat*nat)set"
    1.18  
    1.19  inductive domino
    1.20 @@ -26,7 +26,7 @@
    1.21      Un     "[| a: A;  t: tiling A;  a <= Compl t |] ==> a Un t : tiling A"
    1.22  
    1.23  defs
    1.24 -  below_def  "below n    == nat_rec {} insert n"
    1.25 +  below_def  "below n    == {i. i<n}"
    1.26    evnodd_def "evnodd A b == A Int {(i,j). (i+j) mod 2 = b}"
    1.27  
    1.28  end