--- a/src/ZF/Order.ML Mon Jan 25 20:35:19 1999 +0100
+++ b/src/ZF/Order.ML Wed Jan 27 10:31:31 1999 +0100
@@ -253,8 +253,8 @@
(*Rewriting with bijections and converse (function inverse)*)
val bij_inverse_ss =
- simpset() setSolver (type_auto_tac [ord_iso_is_bij, bij_is_fun, apply_type,
- bij_converse_bij, comp_fun, comp_bij])
+ simpset() setSolver
+ type_solver_tac (tcset() addTCs [ord_iso_is_bij, bij_is_fun, comp_fun, comp_bij])
addsimps [right_inverse_bij, left_inverse_bij];
(** Symmetry and Transitivity Rules **)
@@ -266,23 +266,22 @@
qed "ord_iso_refl";
(*Symmetry of similarity*)
-Goalw [ord_iso_def]
- "f: ord_iso(A,r,B,s) ==> converse(f): ord_iso(B,s,A,r)";
-by (fast_tac (claset() addss bij_inverse_ss) 1);
+Goalw [ord_iso_def] "f: ord_iso(A,r,B,s) ==> converse(f): ord_iso(B,s,A,r)";
+by (force_tac (claset(), bij_inverse_ss) 1);
qed "ord_iso_sym";
(*Transitivity of similarity*)
Goalw [mono_map_def]
"[| g: mono_map(A,r,B,s); f: mono_map(B,s,C,t) |] ==> \
\ (f O g): mono_map(A,r,C,t)";
-by (fast_tac (claset() addss bij_inverse_ss) 1);
+by (force_tac (claset(), bij_inverse_ss) 1);
qed "mono_map_trans";
(*Transitivity of similarity: the order-isomorphism relation*)
Goalw [ord_iso_def]
"[| g: ord_iso(A,r,B,s); f: ord_iso(B,s,C,t) |] ==> \
\ (f O g): ord_iso(A,r,C,t)";
-by (fast_tac (claset() addss bij_inverse_ss) 1);
+by (force_tac (claset(), bij_inverse_ss) 1);
qed "ord_iso_trans";
(** Two monotone maps can make an order-isomorphism **)
@@ -373,16 +372,16 @@
(*Simple consequence of Lemma 6.1*)
Goal "[| well_ord(A,r); f : ord_iso(pred(A,a,r), r, pred(A,c,r), r); \
-\ a:A; c:A |] ==> a=c";
+\ a:A; c:A |] ==> a=c";
by (forward_tac [well_ord_is_trans_on] 1);
by (forward_tac [well_ord_is_linear] 1);
by (linear_case_tac 1);
by (dtac ord_iso_sym 1);
-by (REPEAT (*because there are two symmetric cases*)
- (EVERY [eresolve_tac [pred_subset RSN (2, well_ord_subset) RS
- well_ord_iso_predE] 1,
- blast_tac (claset() addSIs [predI]) 2,
- asm_simp_tac (simpset() addsimps [trans_pred_pred_eq]) 1]));
+(*two symmetric cases*)
+by (auto_tac (claset() addSEs [pred_subset RSN (2, well_ord_subset) RS
+ well_ord_iso_predE]
+ addSIs [predI],
+ simpset() addsimps [trans_pred_pred_eq]));
qed "well_ord_iso_pred_eq";
(*Does not assume r is a wellordering!*)