src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
changeset 10687 c186279eecea
parent 10606 e3229a37d53f
child 11701 3d51fbf81c17
--- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Sat Dec 16 21:41:14 2000 +0100
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Sat Dec 16 21:41:51 2000 +0100
@@ -7,155 +7,162 @@
 
 theory HahnBanachExtLemmas = FunctionNorm:
 
-text{* In this section the following context is presumed.
-Let $E$ be a real vector space with a 
-seminorm $q$ on $E$. $F$ is a subspace of $E$ and $f$ a linear 
-function on $F$. We consider a subspace $H$ of $E$ that is a 
-superspace of $F$ and a linear form $h$ on $H$. $H$ is a not equal 
-to $E$ and $x_0$ is an element in $E \backslash H$.
-$H$ is extended to the direct sum  $H' = H + \idt{lin}\ap x_0$, so for
-any $x\in H'$ the decomposition of $x = y + a \mult x$ 
-with $y\in H$ is unique. $h'$ is defined on $H'$ by  
-$h'\ap x = h\ap y + a \cdot \xi$ for a certain $\xi$.
+text {*
+  In this section the following context is presumed.  Let @{text E} be
+  a real vector space with a seminorm @{text q} on @{text E}. @{text
+  F} is a subspace of @{text E} and @{text f} a linear function on
+  @{text F}. We consider a subspace @{text H} of @{text E} that is a
+  superspace of @{text F} and a linear form @{text h} on @{text
+  H}. @{text H} is a not equal to @{text E} and @{text "x\<^sub>0"} is
+  an element in @{text "E - H"}.  @{text H} is extended to the direct
+  sum @{text "H' = H + lin x\<^sub>0"}, so for any @{text "x \<in> H'"}
+  the decomposition of @{text "x = y + a \<cdot> x"} with @{text "y \<in> H"} is
+  unique. @{text h'} is defined on @{text H'} by
+  @{text "h' x = h y + a \<cdot> \<xi>"} for a certain @{text \<xi>}.
 
-Subsequently we show some properties of this extension $h'$ of $h$.
-*} 
-
+  Subsequently we show some properties of this extension @{text h'} of
+  @{text h}.
+*}
 
-text {* This lemma will be used to show the existence of a linear
-extension of $f$ (see page \pageref{ex-xi-use}). 
-It is a consequence
-of the completeness of $\bbbR$. To show 
-\begin{matharray}{l}
-\Ex{\xi}{\All {y\in F}{a\ap y \leq \xi \land \xi \leq b\ap y}}
-\end{matharray} 
-it suffices to show that 
-\begin{matharray}{l} \All
-{u\in F}{\All {v\in F}{a\ap u \leq b \ap v}} 
-\end{matharray} *}
+text {*
+  This lemma will be used to show the existence of a linear extension
+  of @{text f} (see page \pageref{ex-xi-use}). It is a consequence of
+  the completeness of @{text \<real>}. To show
+  \begin{center}
+  \begin{tabular}{l}
+  @{text "\<exists>\<xi>. \<forall>y \<in> F. a y \<le> \<xi> \<and> \<xi> \<le> b y"}
+  \end{tabular}
+  \end{center}
+  \noindent it suffices to show that
+  \begin{center}
+  \begin{tabular}{l}
+  @{text "\<forall>u \<in> F. \<forall>v \<in> F. a u \<le> b v"}
+  \end{tabular}
+  \end{center}
+*}
 
-lemma ex_xi: 
-  "[| is_vectorspace F; !! u v. [| u \<in> F; v \<in> F |] ==> a u <= b v |]
-  ==> \<exists>xi::real. \<forall>y \<in> F. a y <= xi \<and> xi <= b y" 
+lemma ex_xi:
+  "is_vectorspace F \<Longrightarrow> (\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> b v)
+  \<Longrightarrow> \<exists>xi::real. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
 proof -
   assume vs: "is_vectorspace F"
-  assume r: "(!! u v. [| u \<in> F; v \<in> F |] ==> a u <= (b v::real))"
+  assume r: "(\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> (b v::real))"
 
   txt {* From the completeness of the reals follows:
-  The set $S = \{a\: u\dt\: u\in F\}$ has a supremum, if
+  The set @{text "S = {a u. u \<in> F}"} has a supremum, if
   it is non-empty and has an upper bound. *}
 
   let ?S = "{a u :: real | u. u \<in> F}"
 
-  have "\<exists>xi. isLub UNIV ?S xi"  
+  have "\<exists>xi. isLub UNIV ?S xi"
   proof (rule reals_complete)
-  
-    txt {* The set $S$ is non-empty, since $a\ap\zero \in S$: *}
 
-    from vs have "a 0 \<in> ?S" by force
+    txt {* The set @{text S} is non-empty, since @{text "a 0 \<in> S"}: *}
+
+    from vs have "a 0 \<in> ?S" by blast
     thus "\<exists>X. X \<in> ?S" ..
 
-    txt {* $b\ap \zero$ is an upper bound of $S$: *}
+    txt {* @{text "b 0"} is an upper bound of @{text S}: *}
 
-    show "\<exists>Y. isUb UNIV ?S Y" 
-    proof 
+    show "\<exists>Y. isUb UNIV ?S Y"
+    proof
       show "isUb UNIV ?S (b 0)"
       proof (intro isUbI setleI ballI)
         show "b 0 \<in> UNIV" ..
       next
 
-        txt {* Every element $y\in S$ is less than $b\ap \zero$: *}
+        txt {* Every element @{text "y \<in> S"} is less than @{text "b 0"}: *}
 
-        fix y assume y: "y \<in> ?S" 
+        fix y assume y: "y \<in> ?S"
         from y have "\<exists>u \<in> F. y = a u" by fast
-        thus "y <= b 0" 
+        thus "y \<le> b 0"
         proof
-          fix u assume "u \<in> F" 
+          fix u assume "u \<in> F"
           assume "y = a u"
-          also have "a u <= b 0" by (rule r) (simp!)+
+          also have "a u \<le> b 0" by (rule r) (simp!)+
           finally show ?thesis .
         qed
       qed
     qed
   qed
 
-  thus "\<exists>xi. \<forall>y \<in> F. a y <= xi \<and> xi <= b y" 
+  thus "\<exists>xi. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
   proof (elim exE)
-    fix xi assume "isLub UNIV ?S xi" 
+    fix xi assume "isLub UNIV ?S xi"
     show ?thesis
-    proof (intro exI conjI ballI) 
-   
-      txt {* For all $y\in F$ holds $a\ap y \leq \xi$: *}
-     
+    proof (intro exI conjI ballI)
+
+      txt {* For all @{text "y \<in> F"} holds @{text "a y \<le> \<xi>"}: *}
+
       fix y assume y: "y \<in> F"
-      show "a y <= xi"    
-      proof (rule isUbD)  
+      show "a y \<le> xi"
+      proof (rule isUbD)
         show "isUb UNIV ?S xi" ..
-      qed (force!)
+      qed (blast!)
     next
 
-      txt {* For all $y\in F$ holds $\xi\leq b\ap y$: *}
+      txt {* For all @{text "y \<in> F"} holds @{text "\<xi> \<le> b y"}: *}
 
       fix y assume "y \<in> F"
-      show "xi <= b y"  
+      show "xi \<le> b y"
       proof (intro isLub_le_isUb isUbI setleI)
         show "b y \<in> UNIV" ..
-        show "\<forall>ya \<in> ?S. ya <= b y" 
+        show "\<forall>ya \<in> ?S. ya \<le> b y"
         proof
           fix au assume au: "au \<in> ?S "
           hence "\<exists>u \<in> F. au = a u" by fast
-          thus "au <= b y"
+          thus "au \<le> b y"
           proof
-            fix u assume "u \<in> F" assume "au = a u"  
-            also have "... <= b y" by (rule r)
+            fix u assume "u \<in> F" assume "au = a u"
+            also have "... \<le> b y" by (rule r)
             finally show ?thesis .
           qed
         qed
-      qed 
+      qed
     qed
   qed
 qed
 
-text{* \medskip The function $h'$ is defined as a
-$h'\ap x = h\ap y + a\cdot \xi$ where $x = y + a\mult \xi$
-is a linear extension of $h$ to $H'$. *}
+text {*
+  \medskip The function @{text h'} is defined as a
+  @{text "h' x = h y + a \<cdot> \<xi>"} where @{text "x = y + a \<cdot> \<xi>"} is a
+  linear extension of @{text h} to @{text H'}. *}
 
-lemma h'_lf: 
-  "[| h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
-                in h y + a * xi);
-  H' == H + lin x0; is_subspace H E; is_linearform H h; x0 \<notin> H; 
-  x0 \<in> E; x0 \<noteq> 0; is_vectorspace E |]
-  ==> is_linearform H' h'"
+lemma h'_lf:
+  "h' \<equiv> \<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi
+  \<Longrightarrow> H' \<equiv> H + lin x0 \<Longrightarrow> is_subspace H E \<Longrightarrow> is_linearform H h \<Longrightarrow> x0 \<notin> H
+  \<Longrightarrow> x0 \<in> E \<Longrightarrow> x0 \<noteq> 0 \<Longrightarrow> is_vectorspace E
+  \<Longrightarrow> is_linearform H' h'"
 proof -
-  assume h'_def: 
-    "h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
+  assume h'_def:
+    "h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H
                in h y + a * xi)"
-    and H'_def: "H' == H + lin x0" 
-    and vs: "is_subspace H E" "is_linearform H h" "x0 \<notin> H"
-      "x0 \<noteq> 0" "x0 \<in> E" "is_vectorspace E"
+    and H'_def: "H' \<equiv> H + lin x0"
+    and vs: "is_subspace H E"  "is_linearform H h"  "x0 \<notin> H"
+      "x0 \<noteq> 0"  "x0 \<in> E"  "is_vectorspace E"
 
-  have h': "is_vectorspace H'" 
+  have h': "is_vectorspace H'"
   proof (unfold H'_def, rule vs_sum_vs)
     show "is_subspace (lin x0) E" ..
-  qed 
+  qed
 
   show ?thesis
   proof
-    fix x1 x2 assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'" 
+    fix x1 x2 assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'"
 
-    txt{* We now have to show that $h'$ is additive, i.~e.\
-    $h' \ap (x_1\plus x_2) = h'\ap x_1 + h'\ap x_2$
-    for $x_1, x_2\in H$. *} 
+    txt {* We now have to show that @{text h'} is additive, i.~e.\
+      @{text "h' (x\<^sub>1 + x\<^sub>2) = h' x\<^sub>1 + h' x\<^sub>2"} for
+      @{text "x\<^sub>1, x\<^sub>2 \<in> H"}. *}
 
-    have x1x2: "x1 + x2 \<in> H'" 
-      by (rule vs_add_closed, rule h') 
-    from x1 
-    have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0  \<and> y1 \<in> H" 
+    have x1x2: "x1 + x2 \<in> H'"
+      by (rule vs_add_closed, rule h')
+    from x1
+    have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0  \<and> y1 \<in> H"
       by (unfold H'_def vs_sum_def lin_def) fast
-    from x2 
-    have ex_x2: "\<exists>y2 a2. x2 = y2 + a2 \<cdot> x0 \<and> y2 \<in> H" 
+    from x2
+    have ex_x2: "\<exists>y2 a2. x2 = y2 + a2 \<cdot> x0 \<and> y2 \<in> H"
       by (unfold H'_def vs_sum_def lin_def) fast
-    from x1x2 
+    from x1x2
     have ex_x1x2: "\<exists>y a. x1 + x2 = y + a \<cdot> x0 \<and> y \<in> H"
       by (unfold H'_def vs_sum_def lin_def) fast
 
@@ -164,181 +171,178 @@
     proof (elim exE conjE)
       fix y1 y2 y a1 a2 a
       assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
-         and y2: "x2 = y2 + a2 \<cdot> x0"     and y2': "y2 \<in> H" 
-         and y: "x1 + x2 = y + a \<cdot> x0"   and y':  "y  \<in> H" 
+         and y2: "x2 = y2 + a2 \<cdot> x0"     and y2': "y2 \<in> H"
+         and y: "x1 + x2 = y + a \<cdot> x0"   and y':  "y  \<in> H"
       txt {* \label{decomp-H-use}*}
-      have ya: "y1 + y2 = y \<and> a1 + a2 = a" 
+      have ya: "y1 + y2 = y \<and> a1 + a2 = a"
       proof (rule decomp_H')
-        show "y1 + y2 + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0" 
+        show "y1 + y2 + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0"
           by (simp! add: vs_add_mult_distrib2 [of E])
         show "y1 + y2 \<in> H" ..
       qed
 
       have "h' (x1 + x2) = h y + a * xi"
-	by (rule h'_definite)
-      also have "... = h (y1 + y2) + (a1 + a2) * xi" 
+        by (rule h'_definite)
+      also have "... = h (y1 + y2) + (a1 + a2) * xi"
         by (simp add: ya)
-      also from vs y1' y2' 
-      have "... = h y1 + h y2 + a1 * xi + a2 * xi" 
-	by (simp add: linearform_add [of H] 
+      also from vs y1' y2'
+      have "... = h y1 + h y2 + a1 * xi + a2 * xi"
+        by (simp add: linearform_add [of H]
                       real_add_mult_distrib)
-      also have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)" 
+      also have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"
         by simp
       also have "h y1 + a1 * xi = h' x1"
         by (rule h'_definite [symmetric])
-      also have "h y2 + a2 * xi = h' x2" 
+      also have "h y2 + a2 * xi = h' x2"
         by (rule h'_definite [symmetric])
       finally show ?thesis .
     qed
- 
-    txt{* We further have to show that $h'$ is multiplicative, 
-    i.~e.\ $h'\ap (c \mult x_1) = c \cdot h'\ap x_1$
-    for $x\in H$ and $c\in \bbbR$. 
-    *} 
 
-  next  
-    fix c x1 assume x1: "x1 \<in> H'"    
+    txt {* We further have to show that @{text h'} is multiplicative,
+    i.~e.\ @{text "h' (c \<cdot> x\<^sub>1) = c \<cdot> h' x\<^sub>1"} for @{text "x \<in> H"}
+    and @{text "c \<in> \<real>"}. *}
+
+  next
+    fix c x1 assume x1: "x1 \<in> H'"
     have ax1: "c \<cdot> x1 \<in> H'"
       by (rule vs_mult_closed, rule h')
-    from x1 
-    have ex_x: "!! x. x\<in> H' ==> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
+    from x1
+    have ex_x: "\<And>x. x\<in> H' \<Longrightarrow> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
       by (unfold H'_def vs_sum_def lin_def) fast
 
     from x1 have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0 \<and> y1 \<in> H"
       by (unfold H'_def vs_sum_def lin_def) fast
     with ex_x [of "c \<cdot> x1", OF ax1]
-    show "h' (c \<cdot> x1) = c * (h' x1)"  
+    show "h' (c \<cdot> x1) = c * (h' x1)"
     proof (elim exE conjE)
-      fix y1 y a1 a 
+      fix y1 y a1 a
       assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
-        and y: "c \<cdot> x1 = y  + a \<cdot> x0"    and y': "y \<in> H" 
+        and y: "c \<cdot> x1 = y  + a \<cdot> x0"    and y': "y \<in> H"
 
-      have ya: "c \<cdot> y1 = y \<and> c * a1 = a" 
-      proof (rule decomp_H') 
-	show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0" 
+      have ya: "c \<cdot> y1 = y \<and> c * a1 = a"
+      proof (rule decomp_H')
+        show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0"
           by (simp! add: vs_add_mult_distrib1)
         show "c \<cdot> y1 \<in> H" ..
       qed
 
-      have "h' (c \<cdot> x1) = h y + a * xi" 
-	by (rule h'_definite)
+      have "h' (c \<cdot> x1) = h y + a * xi"
+        by (rule h'_definite)
       also have "... = h (c \<cdot> y1) + (c * a1) * xi"
         by (simp add: ya)
-      also from vs y1' have "... = c * h y1 + c * a1 * xi" 
-	by (simp add: linearform_mult [of H])
-      also from vs y1' have "... = c * (h y1 + a1 * xi)" 
-	by (simp add: real_add_mult_distrib2 real_mult_assoc)
-      also have "h y1 + a1 * xi = h' x1" 
+      also from vs y1' have "... = c * h y1 + c * a1 * xi"
+        by (simp add: linearform_mult [of H])
+      also from vs y1' have "... = c * (h y1 + a1 * xi)"
+        by (simp add: real_add_mult_distrib2 real_mult_assoc)
+      also have "h y1 + a1 * xi = h' x1"
         by (rule h'_definite [symmetric])
       finally show ?thesis .
     qed
   qed
 qed
 
-text{* \medskip The linear extension $h'$ of $h$
-is bounded by the seminorm $p$. *}
+text {* \medskip The linear extension @{text h'} of @{text h}
+is bounded by the seminorm @{text p}. *}
 
 lemma h'_norm_pres:
-  "[| h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
-                 in h y + a * xi);
-  H' == H + lin x0; x0 \<notin> H; x0 \<in> E; x0 \<noteq> 0; is_vectorspace E; 
-  is_subspace H E; is_seminorm E p; is_linearform H h; 
-  \<forall>y \<in> H. h y <= p y; 
-  \<forall>y \<in> H. - p (y + x0) - h y <= xi \<and> xi <= p (y + x0) - h y |]
-   ==> \<forall>x \<in> H'. h' x <= p x" 
-proof 
-  assume h'_def: 
-    "h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
+  "h' \<equiv> \<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi
+  \<Longrightarrow> H' \<equiv> H + lin x0 \<Longrightarrow> x0 \<notin> H \<Longrightarrow> x0 \<in> E \<Longrightarrow> x0 \<noteq> 0 \<Longrightarrow> is_vectorspace E
+  \<Longrightarrow> is_subspace H E \<Longrightarrow> is_seminorm E p \<Longrightarrow> is_linearform H h
+  \<Longrightarrow> \<forall>y \<in> H. h y \<le> p y
+  \<Longrightarrow> \<forall>y \<in> H. - p (y + x0) - h y \<le> xi \<and> xi \<le> p (y + x0) - h y
+  \<Longrightarrow> \<forall>x \<in> H'. h' x \<le> p x"
+proof
+  assume h'_def:
+    "h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H
                in (h y) + a * xi)"
-    and H'_def: "H' == H + lin x0" 
-    and vs: "x0 \<notin> H" "x0 \<in> E" "x0 \<noteq> 0" "is_vectorspace E" 
-            "is_subspace H E" "is_seminorm E p" "is_linearform H h" 
-    and a: "\<forall>y \<in> H. h y <= p y"
-  presume a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya <= xi"
-  presume a2: "\<forall>ya \<in> H. xi <= p (ya + x0) - h ya"
-  fix x assume "x \<in> H'" 
-  have ex_x: 
-    "!! x. x \<in> H' ==> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
+    and H'_def: "H' \<equiv> H + lin x0"
+    and vs: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"  "is_vectorspace E"
+            "is_subspace H E"  "is_seminorm E p"  "is_linearform H h"
+    and a: "\<forall>y \<in> H. h y \<le> p y"
+  presume a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya \<le> xi"
+  presume a2: "\<forall>ya \<in> H. xi \<le> p (ya + x0) - h ya"
+  fix x assume "x \<in> H'"
+  have ex_x:
+    "\<And>x. x \<in> H' \<Longrightarrow> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
     by (unfold H'_def vs_sum_def lin_def) fast
   have "\<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
     by (rule ex_x)
-  thus "h' x <= p x"
+  thus "h' x \<le> p x"
   proof (elim exE conjE)
     fix y a assume x: "x = y + a \<cdot> x0" and y: "y \<in> H"
     have "h' x = h y + a * xi"
       by (rule h'_definite)
 
-    txt{* Now we show  
-    $h\ap y + a \cdot \xi\leq  p\ap (y\plus a \mult x_0)$ 
-    by case analysis on $a$. *}
+    txt {* Now we show @{text "h y + a \<cdot> \<xi> \<le> p (y + a \<cdot> x\<^sub>0)"}
+    by case analysis on @{text a}. *}
 
-    also have "... <= p (y + a \<cdot> x0)"
+    also have "... \<le> p (y + a \<cdot> x0)"
     proof (rule linorder_cases)
 
-      assume z: "a = #0" 
+      assume z: "a = #0"
       with vs y a show ?thesis by simp
 
-    txt {* In the case $a < 0$, we use $a_1$ with $\idt{ya}$ 
-    taken as $y/a$: *}
+    txt {* In the case @{text "a < 0"}, we use @{text "a\<^sub>1"}
+    with @{text ya} taken as @{text "y / a"}: *}
 
     next
       assume lz: "a < #0" hence nz: "a \<noteq> #0" by simp
-      from a1 
-      have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) <= xi"
+      from a1
+      have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) \<le> xi"
         by (rule bspec) (simp!)
 
-      txt {* The thesis for this case now follows by a short  
-      calculation. *}      
-      hence "a * xi <= a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
+      txt {* The thesis for this case now follows by a short
+      calculation. *}
+      hence "a * xi \<le> a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
         by (rule real_mult_less_le_anti [OF lz])
-      also 
+      also
       have "... = - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
         by (rule real_mult_diff_distrib)
-      also from lz vs y 
+      also from lz vs y
       have "- a * (p (inverse a \<cdot> y + x0)) = p (a \<cdot> (inverse a \<cdot> y + x0))"
         by (simp add: seminorm_abs_homogenous abs_minus_eqI2)
       also from nz vs y have "... = p (y + a \<cdot> x0)"
         by (simp add: vs_add_mult_distrib1)
       also from nz vs y have "a * (h (inverse a \<cdot> y)) =  h y"
         by (simp add: linearform_mult [symmetric])
-      finally have "a * xi <= p (y + a \<cdot> x0) - h y" .
+      finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
 
-      hence "h y + a * xi <= h y + p (y + a \<cdot> x0) - h y"
+      hence "h y + a * xi \<le> h y + p (y + a \<cdot> x0) - h y"
         by (simp add: real_add_left_cancel_le)
       thus ?thesis by simp
 
-      txt {* In the case $a > 0$, we use $a_2$ with $\idt{ya}$ 
-      taken as $y/a$: *}
+      txt {* In the case @{text "a > 0"}, we use @{text "a\<^sub>2"}
+        with @{text ya} taken as @{text "y / a"}: *}
 
-    next 
+    next
       assume gz: "#0 < a" hence nz: "a \<noteq> #0" by simp
-      from a2 have "xi <= p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)"
+      from a2 have "xi \<le> p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)"
         by (rule bspec) (simp!)
 
       txt {* The thesis for this case follows by a short
       calculation: *}
 
-      with gz 
-      have "a * xi <= a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
+      with gz
+      have "a * xi \<le> a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
         by (rule real_mult_less_le_mono)
       also have "... = a * p (inverse a \<cdot> y + x0) - a * h (inverse a \<cdot> y)"
-        by (rule real_mult_diff_distrib2) 
-      also from gz vs y 
+        by (rule real_mult_diff_distrib2)
+      also from gz vs y
       have "a * p (inverse a \<cdot> y + x0) = p (a \<cdot> (inverse a \<cdot> y + x0))"
         by (simp add: seminorm_abs_homogenous abs_eqI2)
       also from nz vs y have "... = p (y + a \<cdot> x0)"
         by (simp add: vs_add_mult_distrib1)
       also from nz vs y have "a * h (inverse a \<cdot> y) = h y"
-        by (simp add: linearform_mult [symmetric]) 
-      finally have "a * xi <= p (y + a \<cdot> x0) - h y" .
- 
-      hence "h y + a * xi <= h y + (p (y + a \<cdot> x0) - h y)"
+        by (simp add: linearform_mult [symmetric])
+      finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
+
+      hence "h y + a * xi \<le> h y + (p (y + a \<cdot> x0) - h y)"
         by (simp add: real_add_left_cancel_le)
       thus ?thesis by simp
     qed
     also from x have "... = p x" by simp
     finally show ?thesis .
   qed
-qed blast+ 
+qed blast+
 
 end