src/HOL/Library/AList_Mapping.thy
changeset 63462 c1fe30f2bc32
parent 63195 f3f08c0d4aaf
child 63476 ff1d86b07751
--- a/src/HOL/Library/AList_Mapping.thy	Tue Jul 12 14:53:47 2016 +0200
+++ b/src/HOL/Library/AList_Mapping.thy	Tue Jul 12 15:45:32 2016 +0200
@@ -1,51 +1,43 @@
-(* Title: HOL/Library/AList_Mapping.thy
-   Author: Florian Haftmann, TU Muenchen
+(*  Title:      HOL/Library/AList_Mapping.thy
+    Author:     Florian Haftmann, TU Muenchen
 *)
 
 section \<open>Implementation of mappings with Association Lists\<close>
 
 theory AList_Mapping
-imports AList Mapping
+  imports AList Mapping
 begin
 
 lift_definition Mapping :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) mapping" is map_of .
 
 code_datatype Mapping
 
-lemma lookup_Mapping [simp, code]:
-  "Mapping.lookup (Mapping xs) = map_of xs"
+lemma lookup_Mapping [simp, code]: "Mapping.lookup (Mapping xs) = map_of xs"
   by transfer rule
 
-lemma keys_Mapping [simp, code]:
-  "Mapping.keys (Mapping xs) = set (map fst xs)" 
+lemma keys_Mapping [simp, code]: "Mapping.keys (Mapping xs) = set (map fst xs)"
   by transfer (simp add: dom_map_of_conv_image_fst)
 
-lemma empty_Mapping [code]:
-  "Mapping.empty = Mapping []"
+lemma empty_Mapping [code]: "Mapping.empty = Mapping []"
   by transfer simp
 
-lemma is_empty_Mapping [code]:
-  "Mapping.is_empty (Mapping xs) \<longleftrightarrow> List.null xs"
+lemma is_empty_Mapping [code]: "Mapping.is_empty (Mapping xs) \<longleftrightarrow> List.null xs"
   by (case_tac xs) (simp_all add: is_empty_def null_def)
 
-lemma update_Mapping [code]:
-  "Mapping.update k v (Mapping xs) = Mapping (AList.update k v xs)"
+lemma update_Mapping [code]: "Mapping.update k v (Mapping xs) = Mapping (AList.update k v xs)"
   by transfer (simp add: update_conv')
 
-lemma delete_Mapping [code]:
-  "Mapping.delete k (Mapping xs) = Mapping (AList.delete k xs)"
+lemma delete_Mapping [code]: "Mapping.delete k (Mapping xs) = Mapping (AList.delete k xs)"
   by transfer (simp add: delete_conv')
 
 lemma ordered_keys_Mapping [code]:
   "Mapping.ordered_keys (Mapping xs) = sort (remdups (map fst xs))"
   by (simp only: ordered_keys_def keys_Mapping sorted_list_of_set_sort_remdups) simp
 
-lemma size_Mapping [code]:
-  "Mapping.size (Mapping xs) = length (remdups (map fst xs))"
+lemma size_Mapping [code]: "Mapping.size (Mapping xs) = length (remdups (map fst xs))"
   by (simp add: size_def length_remdups_card_conv dom_map_of_conv_image_fst)
 
-lemma tabulate_Mapping [code]:
-  "Mapping.tabulate ks f = Mapping (map (\<lambda>k. (k, f k)) ks)"
+lemma tabulate_Mapping [code]: "Mapping.tabulate ks f = Mapping (map (\<lambda>k. (k, f k)) ks)"
   by transfer (simp add: map_of_map_restrict)
 
 lemma bulkload_Mapping [code]:
@@ -55,63 +47,69 @@
 lemma equal_Mapping [code]:
   "HOL.equal (Mapping xs) (Mapping ys) \<longleftrightarrow>
     (let ks = map fst xs; ls = map fst ys
-    in (\<forall>l\<in>set ls. l \<in> set ks) \<and> (\<forall>k\<in>set ks. k \<in> set ls \<and> map_of xs k = map_of ys k))"
+     in (\<forall>l\<in>set ls. l \<in> set ks) \<and> (\<forall>k\<in>set ks. k \<in> set ls \<and> map_of xs k = map_of ys k))"
 proof -
-  have aux: "\<And>a b xs. (a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs"
+  have *: "(a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs" for a b xs
     by (auto simp add: image_def intro!: bexI)
   show ?thesis apply transfer
-    by (auto intro!: map_of_eqI) (auto dest!: map_of_eq_dom intro: aux)
+    by (auto intro!: map_of_eqI) (auto dest!: map_of_eq_dom intro: *)
 qed
 
 lemma map_values_Mapping [code]:
-  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b" and xs :: "('c \<times> 'a) list"
-  shows "Mapping.map_values f (Mapping xs) = Mapping (map (\<lambda>(x,y). (x, f x y)) xs)"
-proof (transfer, rule ext, goal_cases)
-  case (1 f xs x)
-  thus ?case by (induction xs) auto
-qed
+  "Mapping.map_values f (Mapping xs) = Mapping (map (\<lambda>(x,y). (x, f x y)) xs)"
+  for f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b" and xs :: "('c \<times> 'a) list"
+  apply transfer
+  apply (rule ext)
+  subgoal for f xs x by (induct xs) auto
+  done
 
-lemma combine_with_key_code [code]: 
+lemma combine_with_key_code [code]:
   "Mapping.combine_with_key f (Mapping xs) (Mapping ys) =
-     Mapping.tabulate (remdups (map fst xs @ map fst ys)) 
+     Mapping.tabulate (remdups (map fst xs @ map fst ys))
        (\<lambda>x. the (combine_options (f x) (map_of xs x) (map_of ys x)))"
-proof (transfer, rule ext, rule sym, goal_cases)
-  case (1 f xs ys x)
-  show ?case
-  by (cases "map_of xs x"; cases "map_of ys x"; simp)
-     (force simp: map_of_eq_None_iff combine_options_def option.the_def o_def image_iff
-            dest: map_of_SomeD split: option.splits)+
-qed
+  apply transfer
+  apply (rule ext)
+  apply (rule sym)
+  subgoal for f xs ys x
+    apply (cases "map_of xs x"; cases "map_of ys x"; simp)
+    apply (force simp: map_of_eq_None_iff combine_options_def option.the_def o_def image_iff
+      dest: map_of_SomeD split: option.splits)+
+    done
+  done
 
-lemma combine_code [code]: 
+lemma combine_code [code]:
   "Mapping.combine f (Mapping xs) (Mapping ys) =
-     Mapping.tabulate (remdups (map fst xs @ map fst ys)) 
+     Mapping.tabulate (remdups (map fst xs @ map fst ys))
        (\<lambda>x. the (combine_options f (map_of xs x) (map_of ys x)))"
-proof (transfer, rule ext, rule sym, goal_cases)
-  case (1 f xs ys x)
-  show ?case
-  by (cases "map_of xs x"; cases "map_of ys x"; simp)
-     (force simp: map_of_eq_None_iff combine_options_def option.the_def o_def image_iff
-            dest: map_of_SomeD split: option.splits)+
-qed
+  apply transfer
+  apply (rule ext)
+  apply (rule sym)
+  subgoal for f xs ys x
+    apply (cases "map_of xs x"; cases "map_of ys x"; simp)
+    apply (force simp: map_of_eq_None_iff combine_options_def option.the_def o_def image_iff
+      dest: map_of_SomeD split: option.splits)+
+    done
+  done
 
-(* TODO: Move? *)
-lemma map_of_filter_distinct:
+lemma map_of_filter_distinct:  (* TODO: move? *)
   assumes "distinct (map fst xs)"
-  shows   "map_of (filter P xs) x = 
-             (case map_of xs x of None \<Rightarrow> None | Some y \<Rightarrow> if P (x,y) then Some y else None)"
+  shows "map_of (filter P xs) x =
+    (case map_of xs x of
+      None \<Rightarrow> None
+    | Some y \<Rightarrow> if P (x,y) then Some y else None)"
   using assms
   by (auto simp: map_of_eq_None_iff filter_map distinct_map_filter dest: map_of_SomeD
-           simp del: map_of_eq_Some_iff intro!: map_of_is_SomeI split: option.splits)
-(* END TODO *)
-  
+      simp del: map_of_eq_Some_iff intro!: map_of_is_SomeI split: option.splits)
+
 lemma filter_Mapping [code]:
   "Mapping.filter P (Mapping xs) = Mapping (filter (\<lambda>(k,v). P k v) (AList.clearjunk xs))"
- by (transfer, rule ext)
-    (subst map_of_filter_distinct, simp_all add: map_of_clearjunk split: option.split)
+  apply transfer
+  apply (rule ext)
+  apply (subst map_of_filter_distinct)
+  apply (simp_all add: map_of_clearjunk split: option.split)
+  done
 
-lemma [code nbe]:
-  "HOL.equal (x :: ('a, 'b) mapping) x \<longleftrightarrow> True"
+lemma [code nbe]: "HOL.equal (x :: ('a, 'b) mapping) x \<longleftrightarrow> True"
   by (fact equal_refl)
 
 end