--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/SimpleGroups.thy Mon Feb 27 17:09:59 2023 +0000
@@ -0,0 +1,95 @@
+(* Title: Simple Groups
+ Author: Jakob von Raumer, Karlsruhe Institute of Technology
+ Maintainer: Jakob von Raumer <jakob.raumer@student.kit.edu>
+*)
+
+theory SimpleGroups
+imports Coset "HOL-Computational_Algebra.Primes"
+begin
+
+section \<open>Simple Groups\<close>
+
+locale simple_group = group +
+ assumes order_gt_one: "order G > 1"
+ assumes no_real_normal_subgroup: "\<And>H. H \<lhd> G \<Longrightarrow> (H = carrier G \<or> H = {\<one>})"
+
+lemma (in simple_group) is_simple_group: "simple_group G"
+ by (rule simple_group_axioms)
+
+text \<open>Simple groups are non-trivial.\<close>
+
+lemma (in simple_group) simple_not_triv: "carrier G \<noteq> {\<one>}"
+ using order_gt_one unfolding order_def by auto
+
+text \<open>Every group of prime order is simple\<close>
+
+lemma (in group) prime_order_simple:
+ assumes prime: "prime (order G)"
+ shows "simple_group G"
+proof
+ from prime show "1 < order G"
+ unfolding prime_nat_iff by auto
+next
+ fix H
+ assume "H \<lhd> G"
+ hence HG: "subgroup H G" unfolding normal_def by simp
+ hence "card H dvd order G"
+ by (metis dvd_triv_right lagrange)
+ with prime have "card H = 1 \<or> card H = order G"
+ unfolding prime_nat_iff by simp
+ thus "H = carrier G \<or> H = {\<one>}"
+ proof
+ assume "card H = 1"
+ moreover from HG have "\<one> \<in> H" by (metis subgroup.one_closed)
+ ultimately show ?thesis by (auto simp: card_Suc_eq)
+ next
+ assume "card H = order G"
+ moreover from HG have "H \<subseteq> carrier G" unfolding subgroup_def by simp
+ moreover from prime have "finite (carrier G)"
+ using order_gt_0_iff_finite by force
+ ultimately show ?thesis
+ unfolding order_def by (metis card_subset_eq)
+ qed
+qed
+
+text \<open>Being simple is a property that is preserved by isomorphisms.\<close>
+
+lemma (in simple_group) iso_simple:
+ assumes H: "group H"
+ assumes iso: "\<phi> \<in> iso G H"
+ shows "simple_group H"
+unfolding simple_group_def simple_group_axioms_def
+proof (intro conjI strip H)
+ from iso have "order G = order H" unfolding iso_def order_def using bij_betw_same_card by auto
+ with order_gt_one show "1 < order H" by simp
+next
+ have inv_iso: "(inv_into (carrier G) \<phi>) \<in> iso H G" using iso
+ by (simp add: iso_set_sym)
+ fix N
+ assume NH: "N \<lhd> H"
+ then interpret Nnormal: normal N H by simp
+ define M where "M = (inv_into (carrier G) \<phi>) ` N"
+ hence MG: "M \<lhd> G"
+ using inv_iso NH H by (metis is_group iso_normal_subgroup)
+ have surj: "\<phi> ` carrier G = carrier H"
+ using iso unfolding iso_def bij_betw_def by simp
+ hence MN: "\<phi> ` M = N"
+ unfolding M_def using Nnormal.subset image_inv_into_cancel by metis
+ then have "N = {\<one>\<^bsub>H\<^esub>}" if "M = {\<one>}"
+ using Nnormal.subgroup_axioms subgroup.one_closed that by force
+ then show "N = carrier H \<or> N = {\<one>\<^bsub>H\<^esub>}"
+ by (metis MG MN no_real_normal_subgroup surj)
+qed
+
+text \<open>As a corollary of this: Factorizing a group by itself does not result in a simple group!\<close>
+
+lemma (in group) self_factor_not_simple: "\<not> simple_group (G Mod (carrier G))"
+proof
+ assume assm: "simple_group (G Mod (carrier G))"
+ with self_factor_iso simple_group.iso_simple have "simple_group (G\<lparr>carrier := {\<one>}\<rparr>)"
+ using subgroup_imp_group triv_subgroup by blast
+ thus False
+ using simple_group.simple_not_triv by force
+qed
+
+end