src/HOLCF/cfun3.ML
changeset 243 c22b85994e17
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/cfun3.ML	Wed Jan 19 17:35:01 1994 +0100
@@ -0,0 +1,403 @@
+(*  Title: 	HOLCF/cfun3.ML
+    ID:         $Id$
+    Author: 	Franz Regensburger
+    Copyright   1993 Technische Universitaet Muenchen
+*)
+
+open Cfun3;
+
+(* ------------------------------------------------------------------------ *)
+(* the contlub property for fapp its 'first' argument                       *)
+(* ------------------------------------------------------------------------ *)
+
+val contlub_fapp1 = prove_goal Cfun3.thy "contlub(fapp)"
+(fn prems =>
+	[
+	(rtac contlubI 1),
+	(strip_tac 1),
+	(rtac (expand_fun_eq RS iffD2) 1),
+	(strip_tac 1),
+	(rtac (lub_cfun RS thelubI RS ssubst) 1),
+	(atac 1),
+	(rtac (Cfunapp2 RS ssubst) 1),
+	(etac contX_lubcfun 1),
+	(rtac (lub_fun RS thelubI RS ssubst) 1),
+	(etac (monofun_fapp1 RS ch2ch_monofun) 1),
+	(rtac refl 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* the contX property for fapp in its first argument                        *)
+(* ------------------------------------------------------------------------ *)
+
+val contX_fapp1 = prove_goal Cfun3.thy "contX(fapp)"
+(fn prems =>
+	[
+	(rtac monocontlub2contX 1),
+	(rtac monofun_fapp1 1),
+	(rtac contlub_fapp1 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* contlub, contX properties of fapp in its first argument in mixfix _[_]   *)
+(* ------------------------------------------------------------------------ *)
+
+val contlub_cfun_fun = prove_goal Cfun3.thy 
+"is_chain(FY) ==>\
+\ lub(range(FY))[x] = lub(range(%i.FY(i)[x]))"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac trans 1),
+	(etac (contlub_fapp1 RS contlubE RS spec RS mp RS fun_cong) 1),
+	(rtac (thelub_fun RS ssubst) 1),
+	(etac (monofun_fapp1 RS ch2ch_monofun) 1),
+	(rtac refl 1)
+	]);
+
+
+val contX_cfun_fun = prove_goal Cfun3.thy 
+"is_chain(FY) ==>\
+\ range(%i.FY(i)[x]) <<| lub(range(FY))[x]"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac thelubE 1),
+	(etac ch2ch_fappL 1),
+	(etac (contlub_cfun_fun RS sym) 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* contlub, contX  properties of fapp in both argument in mixfix _[_]       *)
+(* ------------------------------------------------------------------------ *)
+
+val contlub_cfun = prove_goal Cfun3.thy 
+"[|is_chain(FY);is_chain(TY)|] ==>\
+\ lub(range(FY))[lub(range(TY))] = lub(range(%i.FY(i)[TY(i)]))"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac contlub_CF2 1),
+	(rtac contX_fapp1 1),
+	(rtac allI 1),
+	(rtac contX_fapp2 1),
+	(atac 1),
+	(atac 1)
+	]);
+
+val contX_cfun = prove_goal Cfun3.thy 
+"[|is_chain(FY);is_chain(TY)|] ==>\
+\ range(%i.FY(i)[TY(i)]) <<| lub(range(FY))[lub(range(TY))]"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac thelubE 1),
+	(rtac (monofun_fapp1 RS ch2ch_MF2LR) 1),
+	(rtac allI 1),
+	(rtac monofun_fapp2 1),
+	(atac 1),
+	(atac 1),
+	(etac (contlub_cfun RS sym) 1),
+	(atac 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* contX2contX lemma for fapp                                               *)
+(* ------------------------------------------------------------------------ *)
+
+val contX2contX_fapp = prove_goal Cfun3.thy 
+	"[|contX(%x.ft(x));contX(%x.tt(x))|] ==> contX(%x.(ft(x))[tt(x)])"
+ (fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac contX2contX_app2 1),
+	(rtac contX2contX_app2 1),
+	(rtac contX_const 1),
+	(rtac contX_fapp1 1),
+	(atac 1),
+	(rtac contX_fapp2 1),
+	(atac 1)
+	]);
+
+
+
+(* ------------------------------------------------------------------------ *)
+(* contX2mono Lemma for %x. LAM y. c1(x,y)                                  *)
+(* ------------------------------------------------------------------------ *)
+
+val contX2mono_LAM = prove_goal Cfun3.thy 
+ "[|!x.contX(c1(x)); !y.monofun(%x.c1(x,y))|] ==>\
+\	 		monofun(%x. LAM y. c1(x,y))"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac monofunI 1),
+	(strip_tac 1),
+	(rtac (less_cfun RS ssubst) 1),
+	(rtac (less_fun RS ssubst) 1),
+	(rtac allI 1),
+	(rtac (beta_cfun RS ssubst) 1),
+	(etac spec 1),
+	(rtac (beta_cfun RS ssubst) 1),
+	(etac spec 1),
+	(etac ((hd (tl prems)) RS spec RS monofunE RS spec RS spec RS mp) 1)
+	]);
+
+(* ------------------------------------------------------------------------ *)
+(* contX2contX Lemma for %x. LAM y. c1(x,y)                                 *)
+(* ------------------------------------------------------------------------ *)
+
+val contX2contX_LAM = prove_goal Cfun3.thy 
+ "[| !x.contX(c1(x)); !y.contX(%x.c1(x,y)) |] ==> contX(%x. LAM y. c1(x,y))"
+(fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac monocontlub2contX 1),
+	(etac contX2mono_LAM 1),
+	(rtac (contX2mono RS allI) 1),
+	(etac spec 1),
+	(rtac contlubI 1),
+	(strip_tac 1),
+	(rtac (thelub_cfun RS ssubst) 1),
+	(rtac (contX2mono_LAM RS ch2ch_monofun) 1),
+	(atac 1),
+	(rtac (contX2mono RS allI) 1),
+	(etac spec 1),
+	(atac 1),
+	(res_inst_tac [("f","fabs")] arg_cong 1),
+	(rtac ext 1),
+	(rtac (beta_cfun RS ext RS ssubst) 1),
+	(etac spec 1),
+	(rtac (contX2contlub RS contlubE 
+		RS spec RS mp ) 1),
+	(etac spec 1),
+	(atac 1)
+	]);
+
+(* ------------------------------------------------------------------------ *)
+(* elimination of quantifier in premisses of contX2contX_LAM yields good    *)
+(* lemma for the contX tactic                                               *)
+(* ------------------------------------------------------------------------ *)
+
+val contX2contX_LAM2 = (allI RSN (2,(allI RS contX2contX_LAM)));
+(*
+	[| !!x. contX(?c1.0(x)); !!y. contX(%x. ?c1.0(x,y)) |] ==>
+					contX(%x. LAM y. ?c1.0(x,y))
+*)
+
+(* ------------------------------------------------------------------------ *)
+(* contX2contX tactic                                                       *)
+(* ------------------------------------------------------------------------ *)
+
+val contX_lemmas = [contX_const, contX_id, contX_fapp2,
+			contX2contX_fapp,contX2contX_LAM2];
+
+
+val contX_tac = (fn i => (resolve_tac contX_lemmas i));
+
+val contX_tacR = (fn i => (REPEAT (contX_tac i)));
+
+(* ------------------------------------------------------------------------ *)
+(* function application _[_]  is strict in its first arguments              *)
+(* ------------------------------------------------------------------------ *)
+
+val strict_fapp1 = prove_goal Cfun3.thy "UU[x] = UU"
+ (fn prems =>
+	[
+	(rtac (inst_cfun_pcpo RS ssubst) 1),
+	(rewrite_goals_tac [UU_cfun_def]),
+	(rtac (beta_cfun RS ssubst) 1),
+	(contX_tac 1),
+	(rtac refl 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* results about strictify                                                  *)
+(* ------------------------------------------------------------------------ *)
+
+val Istrictify1 = prove_goalw Cfun3.thy [Istrictify_def]
+	"Istrictify(f)(UU)=UU"
+ (fn prems =>
+	[
+	(rtac select_equality 1),
+	(fast_tac HOL_cs 1),
+	(fast_tac HOL_cs 1)
+	]);
+
+val Istrictify2 = prove_goalw Cfun3.thy [Istrictify_def]
+	"~x=UU ==> Istrictify(f)(x)=f[x]"
+ (fn prems =>
+	[
+	(cut_facts_tac prems 1),
+	(rtac select_equality 1),
+	(fast_tac HOL_cs 1),
+	(fast_tac HOL_cs 1)
+	]);
+
+val monofun_Istrictify1 = prove_goal Cfun3.thy "monofun(Istrictify)"
+ (fn prems =>
+	[
+	(rtac monofunI 1),
+	(strip_tac 1),
+	(rtac (less_fun RS iffD2) 1),
+	(strip_tac 1),
+	(res_inst_tac [("Q","xa=UU")] (excluded_middle RS disjE) 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(atac 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(atac 1),
+	(rtac monofun_cfun_fun 1),
+	(atac 1),
+	(hyp_subst_tac 1),
+	(rtac (Istrictify1 RS ssubst) 1),
+	(rtac (Istrictify1 RS ssubst) 1),
+	(rtac refl_less 1)
+	]);
+
+val monofun_Istrictify2 = prove_goal Cfun3.thy "monofun(Istrictify(f))"
+ (fn prems =>
+	[
+	(rtac monofunI 1),
+	(strip_tac 1),
+	(res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(etac notUU_I 1),
+	(atac 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(atac 1),
+	(rtac monofun_cfun_arg 1),
+	(atac 1),
+	(hyp_subst_tac 1),
+	(rtac (Istrictify1 RS ssubst) 1),
+	(rtac minimal 1)
+	]);
+
+
+val contlub_Istrictify1 = prove_goal Cfun3.thy "contlub(Istrictify)"
+ (fn prems =>
+	[
+	(rtac contlubI 1),
+	(strip_tac 1),
+	(rtac (expand_fun_eq RS iffD2) 1),
+	(strip_tac 1),
+	(rtac (thelub_fun RS ssubst) 1),
+	(etac (monofun_Istrictify1 RS ch2ch_monofun) 1),
+	(res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(atac 1),
+	(rtac (Istrictify2 RS ext RS ssubst) 1),
+	(atac 1),
+	(rtac (thelub_cfun RS ssubst) 1),
+	(atac 1),
+	(rtac (beta_cfun RS ssubst) 1),
+	(rtac contX_lubcfun 1),
+	(atac 1),
+	(rtac refl 1),
+	(hyp_subst_tac 1),
+	(rtac (Istrictify1 RS ssubst) 1),
+	(rtac (Istrictify1 RS ext RS ssubst) 1),
+	(rtac (chain_UU_I_inverse RS sym) 1),
+	(rtac (refl RS allI) 1)
+	]);
+
+val contlub_Istrictify2 = prove_goal Cfun3.thy "contlub(Istrictify(f))"
+ (fn prems =>
+	[
+	(rtac contlubI 1),
+	(strip_tac 1),
+	(res_inst_tac [("Q","lub(range(Y))=UU")] classical2 1),
+	(res_inst_tac [("t","lub(range(Y))")] subst 1),
+	(rtac sym 1),
+	(atac 1),
+	(rtac (Istrictify1 RS ssubst) 1),
+	(rtac sym 1),
+	(rtac chain_UU_I_inverse 1),
+	(strip_tac 1),
+	(res_inst_tac [("t","Y(i)"),("s","UU")] subst 1),
+	(rtac sym 1),
+	(rtac (chain_UU_I RS spec) 1),
+	(atac 1),
+	(atac 1),
+	(rtac Istrictify1 1),
+	(rtac (Istrictify2 RS ssubst) 1),
+	(atac 1),
+	(res_inst_tac [("s","lub(range(%i. f[Y(i)]))")] trans 1),
+	(rtac contlub_cfun_arg 1),
+	(atac 1),
+	(rtac lub_equal2 1),
+	(rtac (chain_mono2 RS exE) 1),
+	(atac 2),
+	(rtac chain_UU_I_inverse2 1),
+	(atac 1),
+	(rtac exI 1),
+	(strip_tac 1),
+	(rtac (Istrictify2 RS sym) 1),
+	(fast_tac HOL_cs 1),
+	(rtac ch2ch_monofun 1),
+	(rtac monofun_fapp2 1),
+	(atac 1),
+	(rtac ch2ch_monofun 1),
+	(rtac monofun_Istrictify2 1),
+	(atac 1)
+	]);
+
+
+val contX_Istrictify1 =	(contlub_Istrictify1 RS 
+	(monofun_Istrictify1 RS monocontlub2contX)); 
+
+val contX_Istrictify2 = (contlub_Istrictify2 RS 
+	(monofun_Istrictify2 RS monocontlub2contX)); 
+
+
+val strictify1 = prove_goalw Cfun3.thy [strictify_def]
+	"strictify[f][UU]=UU"
+ (fn prems =>
+	[
+	(rtac (beta_cfun RS ssubst) 1),
+	(contX_tac 1),
+	(rtac contX_Istrictify2 1),
+	(rtac contX2contX_CF1L 1),
+	(rtac contX_Istrictify1 1),
+	(rtac (beta_cfun RS ssubst) 1),
+	(rtac contX_Istrictify2 1),
+	(rtac Istrictify1 1)
+	]);
+
+val strictify2 = prove_goalw Cfun3.thy [strictify_def]
+	"~x=UU ==> strictify[f][x]=f[x]"
+ (fn prems =>
+	[
+	(rtac (beta_cfun RS ssubst) 1),
+	(contX_tac 1),
+	(rtac contX_Istrictify2 1),
+	(rtac contX2contX_CF1L 1),
+	(rtac contX_Istrictify1 1),
+	(rtac (beta_cfun RS ssubst) 1),
+	(rtac contX_Istrictify2 1),
+	(rtac Istrictify2 1),
+	(resolve_tac prems 1)
+	]);
+
+
+(* ------------------------------------------------------------------------ *)
+(* Instantiate the simplifier                                               *)
+(* ------------------------------------------------------------------------ *)
+
+val Cfun_rews  = [minimal,refl_less,beta_cfun,strict_fapp1,strictify1,
+		strictify2];
+
+(* ------------------------------------------------------------------------ *)
+(* use contX_tac as autotac.                                                *)
+(* ------------------------------------------------------------------------ *)
+
+val Cfun_ss = HOL_ss 
+	addsimps  Cfun_rews 
+	setsolver 
+	(fn thms => (resolve_tac (TrueI::refl::thms)) ORELSE' atac ORELSE'
+		    (fn i => DEPTH_SOLVE_1 (contX_tac i))
+	);