--- a/src/HOL/HOLCF/Fix.thy Tue Oct 13 09:21:14 2015 +0200
+++ b/src/HOL/HOLCF/Fix.thy Tue Oct 13 09:21:15 2015 +0200
@@ -178,15 +178,15 @@
assumes step: "\<And>x y. P x y \<Longrightarrow> P (F\<cdot>x) (G\<cdot>y)"
shows "P (fix\<cdot>F) (fix\<cdot>G)"
proof -
- from adm have adm': "adm (split P)"
+ from adm have adm': "adm (case_prod P)"
unfolding split_def .
have "\<And>i. P (iterate i\<cdot>F\<cdot>\<bottom>) (iterate i\<cdot>G\<cdot>\<bottom>)"
by (induct_tac i, simp add: base, simp add: step)
- hence "\<And>i. split P (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>)"
+ hence "\<And>i. case_prod P (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>)"
by simp
- hence "split P (\<Squnion>i. (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>))"
+ hence "case_prod P (\<Squnion>i. (iterate i\<cdot>F\<cdot>\<bottom>, iterate i\<cdot>G\<cdot>\<bottom>))"
by - (rule admD [OF adm'], simp, assumption)
- hence "split P (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>, \<Squnion>i. iterate i\<cdot>G\<cdot>\<bottom>)"
+ hence "case_prod P (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>, \<Squnion>i. iterate i\<cdot>G\<cdot>\<bottom>)"
by (simp add: lub_Pair)
hence "P (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>) (\<Squnion>i. iterate i\<cdot>G\<cdot>\<bottom>)"
by simp