src/HOL/Induct/Comb.ML
changeset 3120 c58423c20740
child 3207 fe79ad367d77
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Induct/Comb.ML	Wed May 07 12:50:26 1997 +0200
@@ -0,0 +1,179 @@
+(*  Title:      HOL/ex/comb.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+
+Combinatory Logic example: the Church-Rosser Theorem
+Curiously, combinators do not include free variables.
+
+Example taken from
+    J. Camilleri and T. F. Melham.
+    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
+    Report 265, University of Cambridge Computer Laboratory, 1992.
+
+HOL system proofs may be found in
+/usr/groups/theory/hvg-aftp/contrib/rule-induction/cl.ml
+*)
+
+open Comb;
+
+(*** Reflexive/Transitive closure preserves the Church-Rosser property 
+     So does the Transitive closure; use r_into_trancl instead of rtrancl_refl
+***)
+
+val [_, spec_mp] = [spec] RL [mp];
+
+(*Strip lemma.  The induction hyp is all but the last diamond of the strip.*)
+goalw Comb.thy [diamond_def]
+    "!!r. [| diamond(r);  (x,y):r^* |] ==> \ 
+\         ALL y'. (x,y'):r --> (EX z. (y',z): r^* & (y,z): r)";
+by (etac rtrancl_induct 1);
+by (Blast_tac 1);
+by (slow_best_tac (set_cs addIs [r_into_rtrancl RSN (2, rtrancl_trans)]
+                           addSDs [spec_mp]) 1);
+val diamond_strip_lemmaE = result() RS spec RS mp RS exE;
+
+val [major] = goal Comb.thy "diamond(r) ==> diamond(r^*)";
+by (rewtac diamond_def);  (*unfold only in goal, not in premise!*)
+by (rtac (impI RS allI RS allI) 1);
+by (etac rtrancl_induct 1);
+by (Blast_tac 1);
+by (slow_best_tac  (*Seems to be a brittle, undirected search*)
+    (set_cs addIs [r_into_rtrancl RSN (2, rtrancl_trans)]
+            addEs [major RS diamond_strip_lemmaE]) 1);
+qed "diamond_rtrancl";
+
+
+(*** Results about Contraction ***)
+
+(*Derive a case for each combinator constructor*)
+val K_contractE = contract.mk_cases comb.simps "K -1-> z";
+val S_contractE = contract.mk_cases comb.simps "S -1-> z";
+val Ap_contractE = contract.mk_cases comb.simps "x#y -1-> z";
+
+AddSIs [contract.K, contract.S];
+AddIs  [contract.Ap1, contract.Ap2];
+AddSEs [K_contractE, S_contractE, Ap_contractE];
+Unsafe_Addss  (!simpset);
+
+goalw Comb.thy [I_def] "!!z. I -1-> z ==> P";
+by (Blast_tac 1);
+qed "I_contract_E";
+AddSEs [I_contract_E];
+
+goal Comb.thy "!!x z. K#x -1-> z ==> (EX x'. z = K#x' & x -1-> x')";
+by (Blast_tac 1);
+qed "K1_contractD";
+AddSEs [K1_contractD];
+
+goal Comb.thy "!!x z. x ---> y ==> x#z ---> y#z";
+by (etac rtrancl_induct 1);
+by (ALLGOALS (blast_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));
+qed "Ap_reduce1";
+
+goal Comb.thy "!!x z. x ---> y ==> z#x ---> z#y";
+by (etac rtrancl_induct 1);
+by (ALLGOALS (blast_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));
+qed "Ap_reduce2";
+
+(** Counterexample to the diamond property for -1-> **)
+
+goal Comb.thy "K#I#(I#I) -1-> I";
+by (rtac contract.K 1);
+qed "KIII_contract1";
+
+goalw Comb.thy [I_def] "K#I#(I#I) -1-> K#I#((K#I)#(K#I))";
+by (Blast_tac 1);
+qed "KIII_contract2";
+
+goal Comb.thy "K#I#((K#I)#(K#I)) -1-> I";
+by (Blast_tac 1);
+qed "KIII_contract3";
+
+goalw Comb.thy [diamond_def] "~ diamond(contract)";
+by (blast_tac (!claset addIs [KIII_contract1,KIII_contract2,KIII_contract3]) 1);
+qed "not_diamond_contract";
+
+
+
+(*** Results about Parallel Contraction ***)
+
+(*Derive a case for each combinator constructor*)
+val K_parcontractE = parcontract.mk_cases comb.simps "K =1=> z";
+val S_parcontractE = parcontract.mk_cases comb.simps "S =1=> z";
+val Ap_parcontractE = parcontract.mk_cases comb.simps "x#y =1=> z";
+
+AddIs  parcontract.intrs;
+AddSEs [K_parcontractE, S_parcontractE,Ap_parcontractE];
+Unsafe_Addss  (!simpset);
+
+(*** Basic properties of parallel contraction ***)
+
+goal Comb.thy "!!x z. K#x =1=> z ==> (EX x'. z = K#x' & x =1=> x')";
+by (Blast_tac 1);
+qed "K1_parcontractD";
+AddSDs [K1_parcontractD];
+
+goal Comb.thy "!!x z. S#x =1=> z ==> (EX x'. z = S#x' & x =1=> x')";
+by (Blast_tac 1);
+qed "S1_parcontractD";
+AddSDs [S1_parcontractD];
+
+goal Comb.thy
+ "!!x y z. S#x#y =1=> z ==> (EX x' y'. z = S#x'#y' & x =1=> x' & y =1=> y')";
+by (Blast_tac 1);
+qed "S2_parcontractD";
+AddSDs [S2_parcontractD];
+
+(*The rules above are not essential but make proofs much faster*)
+
+
+(*Church-Rosser property for parallel contraction*)
+goalw Comb.thy [diamond_def] "diamond parcontract";
+by (rtac (impI RS allI RS allI) 1);
+by (etac parcontract.induct 1 THEN prune_params_tac);
+by (Step_tac 1);
+by (ALLGOALS Blast_tac);
+qed "diamond_parcontract";
+
+
+(*** Equivalence of x--->y and x===>y ***)
+
+goal Comb.thy "contract <= parcontract";
+by (rtac subsetI 1);
+by (split_all_tac 1);
+by (etac contract.induct 1);
+by (ALLGOALS Blast_tac);
+qed "contract_subset_parcontract";
+
+(*Reductions: simply throw together reflexivity, transitivity and
+  the one-step reductions*)
+
+AddIs [Ap_reduce1, Ap_reduce2, r_into_rtrancl, rtrancl_trans];
+
+(*Example only: not used*)
+goalw Comb.thy [I_def] "I#x ---> x";
+by (Blast_tac 1);
+qed "reduce_I";
+
+goal Comb.thy "parcontract <= contract^*";
+by (rtac subsetI 1);
+by (split_all_tac 1);
+by (etac parcontract.induct 1 THEN prune_params_tac);
+by (ALLGOALS Blast_tac);
+qed "parcontract_subset_reduce";
+
+goal Comb.thy "contract^* = parcontract^*";
+by (REPEAT 
+    (resolve_tac [equalityI, 
+                  contract_subset_parcontract RS rtrancl_mono, 
+                  parcontract_subset_reduce RS rtrancl_subset_rtrancl] 1));
+qed "reduce_eq_parreduce";
+
+goal Comb.thy "diamond(contract^*)";
+by (simp_tac (!simpset addsimps [reduce_eq_parreduce, diamond_rtrancl, 
+                                 diamond_parcontract]) 1);
+qed "diamond_reduce";
+
+
+writeln"Reached end of file.";