src/ZF/OrderArith.thy
changeset 46820 c656222c4dc1
parent 35762 af3ff2ba4c54
child 46821 ff6b0c1087f2
--- a/src/ZF/OrderArith.thy	Sun Mar 04 23:20:43 2012 +0100
+++ b/src/ZF/OrderArith.thy	Tue Mar 06 15:15:49 2012 +0000
@@ -12,22 +12,22 @@
   radd    :: "[i,i,i,i]=>i"  where
     "radd(A,r,B,s) == 
                 {z: (A+B) * (A+B).  
-                    (EX x y. z = <Inl(x), Inr(y)>)   |   
-                    (EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   |      
-                    (EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
+                    (\<exists>x y. z = <Inl(x), Inr(y)>)   |   
+                    (\<exists>x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   |      
+                    (\<exists>y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
 
 definition
   (*lexicographic product of two relations; underlies ordinal multiplication*)
   rmult   :: "[i,i,i,i]=>i"  where
     "rmult(A,r,B,s) == 
                 {z: (A*B) * (A*B).  
-                    EX x' y' x y. z = <<x',y'>, <x,y>> &         
+                    \<exists>x' y' x y. z = <<x',y'>, <x,y>> &         
                        (<x',x>: r | (x'=x & <y',y>: s))}"
 
 definition
   (*inverse image of a relation*)
   rvimage :: "[i,i,i]=>i"  where
-    "rvimage(A,f,r) == {z: A*A. EX x y. z = <x,y> & <f`x,f`y>: r}"
+    "rvimage(A,f,r) == {z: A*A. \<exists>x y. z = <x,y> & <f`x,f`y>: r}"
 
 definition
   measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i"  where
@@ -39,19 +39,19 @@
 subsubsection{*Rewrite rules.  Can be used to obtain introduction rules*}
 
 lemma radd_Inl_Inr_iff [iff]: 
-    "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
+    "<Inl(a), Inr(b)> \<in> radd(A,r,B,s)  <->  a:A & b:B"
 by (unfold radd_def, blast)
 
 lemma radd_Inl_iff [iff]: 
-    "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
+    "<Inl(a'), Inl(a)> \<in> radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
 by (unfold radd_def, blast)
 
 lemma radd_Inr_iff [iff]: 
-    "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
+    "<Inr(b'), Inr(b)> \<in> radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
 by (unfold radd_def, blast)
 
 lemma radd_Inr_Inl_iff [simp]: 
-    "<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False"
+    "<Inr(b), Inl(a)> \<in> radd(A,r,B,s) <-> False"
 by (unfold radd_def, blast)
 
 declare radd_Inr_Inl_iff [THEN iffD1, dest!] 
@@ -59,7 +59,7 @@
 subsubsection{*Elimination Rule*}
 
 lemma raddE:
-    "[| <p',p> : radd(A,r,B,s);                  
+    "[| <p',p> \<in> radd(A,r,B,s);                  
         !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
         !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
         !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
@@ -68,7 +68,7 @@
 
 subsubsection{*Type checking*}
 
-lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
+lemma radd_type: "radd(A,r,B,s) \<subseteq> (A+B) * (A+B)"
 apply (unfold radd_def)
 apply (rule Collect_subset)
 done
@@ -86,10 +86,10 @@
 
 lemma wf_on_radd: "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
 apply (rule wf_onI2)
-apply (subgoal_tac "ALL x:A. Inl (x) : Ba")
+apply (subgoal_tac "\<forall>x\<in>A. Inl (x) \<in> Ba")
  --{*Proving the lemma, which is needed twice!*}
  prefer 2
- apply (erule_tac V = "y : A + B" in thin_rl)
+ apply (erule_tac V = "y \<in> A + B" in thin_rl)
  apply (rule_tac ballI)
  apply (erule_tac r = r and a = x in wf_on_induct, assumption)
  apply blast 
@@ -116,7 +116,7 @@
 
 lemma sum_bij:
      "[| f: bij(A,C);  g: bij(B,D) |]
-      ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
+      ==> (\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) \<in> bij(A+B, C+D)"
 apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))" 
        in lam_bijective)
 apply (typecheck add: bij_is_inj inj_is_fun) 
@@ -125,8 +125,8 @@
 
 lemma sum_ord_iso_cong: 
     "[| f: ord_iso(A,r,A',r');  g: ord_iso(B,s,B',s') |] ==>      
-            (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))             
-            : ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
+            (\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))             
+            \<in> ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
 apply (unfold ord_iso_def)
 apply (safe intro!: sum_bij)
 (*Do the beta-reductions now*)
@@ -134,9 +134,9 @@
 done
 
 (*Could we prove an ord_iso result?  Perhaps 
-     ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
-lemma sum_disjoint_bij: "A Int B = 0 ==>      
-            (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)"
+     ord_iso(A+B, radd(A,r,B,s), A \<union> B, r \<union> s) *)
+lemma sum_disjoint_bij: "A \<inter> B = 0 ==>      
+            (\<lambda>z\<in>A+B. case(%x. x, %y. y, z)) \<in> bij(A+B, A \<union> B)"
 apply (rule_tac d = "%z. if z:A then Inl (z) else Inr (z) " in lam_bijective)
 apply auto
 done
@@ -144,16 +144,16 @@
 subsubsection{*Associativity*}
 
 lemma sum_assoc_bij:
-     "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
-      : bij((A+B)+C, A+(B+C))"
+     "(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
+      \<in> bij((A+B)+C, A+(B+C))"
 apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))" 
        in lam_bijective)
 apply auto
 done
 
 lemma sum_assoc_ord_iso:
-     "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
-      : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
+     "(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
+      \<in> ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
                 A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
 by (rule sum_assoc_bij [THEN ord_isoI], auto)
 
@@ -163,14 +163,14 @@
 subsubsection{*Rewrite rule.  Can be used to obtain introduction rules*}
 
 lemma  rmult_iff [iff]: 
-    "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
+    "<<a',b'>, <a,b>> \<in> rmult(A,r,B,s) <->        
             (<a',a>: r  & a':A & a:A & b': B & b: B) |   
             (<b',b>: s  & a'=a & a:A & b': B & b: B)"
 
 by (unfold rmult_def, blast)
 
 lemma rmultE: 
-    "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
+    "[| <<a',b'>, <a,b>> \<in> rmult(A,r,B,s);               
         [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
         [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
      |] ==> Q"
@@ -178,7 +178,7 @@
 
 subsubsection{*Type checking*}
 
-lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
+lemma rmult_type: "rmult(A,r,B,s) \<subseteq> (A*B) * (A*B)"
 by (unfold rmult_def, rule Collect_subset)
 
 lemmas field_rmult = rmult_type [THEN field_rel_subset]
@@ -195,7 +195,7 @@
 apply (rule wf_onI2)
 apply (erule SigmaE)
 apply (erule ssubst)
-apply (subgoal_tac "ALL b:B. <x,b>: Ba", blast)
+apply (subgoal_tac "\<forall>b\<in>B. <x,b>: Ba", blast)
 apply (erule_tac a = x in wf_on_induct, assumption)
 apply (rule ballI)
 apply (erule_tac a = b in wf_on_induct, assumption)
@@ -221,7 +221,7 @@
 
 lemma prod_bij:
      "[| f: bij(A,C);  g: bij(B,D) |] 
-      ==> (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)"
+      ==> (lam <x,y>:A*B. <f`x, g`y>) \<in> bij(A*B, C*D)"
 apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>" 
        in lam_bijective)
 apply (typecheck add: bij_is_inj inj_is_fun) 
@@ -231,20 +231,20 @@
 lemma prod_ord_iso_cong: 
     "[| f: ord_iso(A,r,A',r');  g: ord_iso(B,s,B',s') |]      
      ==> (lam <x,y>:A*B. <f`x, g`y>)                                  
-         : ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
+         \<in> ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
 apply (unfold ord_iso_def)
 apply (safe intro!: prod_bij)
 apply (simp_all add: bij_is_fun [THEN apply_type])
 apply (blast intro: bij_is_inj [THEN inj_apply_equality])
 done
 
-lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
+lemma singleton_prod_bij: "(\<lambda>z\<in>A. <x,z>) \<in> bij(A, {x}*A)"
 by (rule_tac d = snd in lam_bijective, auto)
 
 (*Used??*)
 lemma singleton_prod_ord_iso:
      "well_ord({x},xr) ==>   
-          (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
+          (\<lambda>z\<in>A. <x,z>) \<in> ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
 apply (rule singleton_prod_bij [THEN ord_isoI])
 apply (simp (no_asm_simp))
 apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])
@@ -253,9 +253,9 @@
 (*Here we build a complicated function term, then simplify it using
   case_cong, id_conv, comp_lam, case_case.*)
 lemma prod_sum_singleton_bij:
-     "a~:C ==>  
-       (lam x:C*B + D. case(%x. x, %y.<a,y>, x))  
-       : bij(C*B + D, C*B Un {a}*D)"
+     "a\<notin>C ==>  
+       (\<lambda>x\<in>C*B + D. case(%x. x, %y.<a,y>, x))  
+       \<in> bij(C*B + D, C*B \<union> {a}*D)"
 apply (rule subst_elem)
 apply (rule id_bij [THEN sum_bij, THEN comp_bij])
 apply (rule singleton_prod_bij)
@@ -268,10 +268,10 @@
 
 lemma prod_sum_singleton_ord_iso:
  "[| a:A;  well_ord(A,r) |] ==>  
-    (lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))  
-    : ord_iso(pred(A,a,r)*B + pred(B,b,s),               
+    (\<lambda>x\<in>pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))  
+    \<in> ord_iso(pred(A,a,r)*B + pred(B,b,s),               
                   radd(A*B, rmult(A,r,B,s), B, s),       
-              pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))"
+              pred(A,a,r)*B \<union> {a}*pred(B,b,s), rmult(A,r,B,s))"
 apply (rule prod_sum_singleton_bij [THEN ord_isoI])
 apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])
 apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)
@@ -281,25 +281,25 @@
 
 lemma sum_prod_distrib_bij:
      "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
-      : bij((A+B)*C, (A*C)+(B*C))"
+      \<in> bij((A+B)*C, (A*C)+(B*C))"
 by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " 
     in lam_bijective, auto)
 
 lemma sum_prod_distrib_ord_iso:
  "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
-  : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
+  \<in> ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
             (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
 by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
 
 subsubsection{*Associativity*}
 
 lemma prod_assoc_bij:
-     "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
+     "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) \<in> bij((A*B)*C, A*(B*C))"
 by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
 
 lemma prod_assoc_ord_iso:
  "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
-  : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
+  \<in> ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
             A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
 by (rule prod_assoc_bij [THEN ord_isoI], auto)
 
@@ -307,12 +307,12 @@
 
 subsubsection{*Rewrite rule*}
 
-lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
+lemma rvimage_iff: "<a,b> \<in> rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
 by (unfold rvimage_def, blast)
 
 subsubsection{*Type checking*}
 
-lemma rvimage_type: "rvimage(A,f,r) <= A*A"
+lemma rvimage_type: "rvimage(A,f,r) \<subseteq> A*A"
 by (unfold rvimage_def, rule Collect_subset)
 
 lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
@@ -361,7 +361,7 @@
 lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"
 apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
 apply clarify
-apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
+apply (subgoal_tac "\<exists>w. w \<in> {w: {f`x. x:Q}. \<exists>x. x: Q & (f`x = w) }")
  apply (erule allE)
  apply (erule impE)
  apply assumption
@@ -373,7 +373,7 @@
  @{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*}
 lemma wf_on_rvimage: "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
 apply (rule wf_onI2)
-apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
+apply (subgoal_tac "\<forall>z\<in>A. f`z=f`y \<longrightarrow> z: Ba")
  apply blast
 apply (erule_tac a = "f`y" in wf_on_induct)
  apply (blast intro!: apply_funtype)
@@ -396,7 +396,7 @@
 done
 
 lemma ord_iso_rvimage_eq: 
-    "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
+    "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r \<inter> A*A"
 by (unfold ord_iso_def rvimage_def, blast)
 
 
@@ -440,7 +440,7 @@
 
 
 lemma wf_imp_subset_rvimage:
-     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
+     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i))"
 apply (rule_tac x="wftype(r)" in exI)
 apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
 apply (simp add: Ord_wftype, clarify)
@@ -450,25 +450,25 @@
 done
 
 theorem wf_iff_subset_rvimage:
-  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
+  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i)))"
 by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
           intro: wf_rvimage_Ord [THEN wf_subset])
 
 
 subsection{*Other Results*}
 
-lemma wf_times: "A Int B = 0 ==> wf(A*B)"
+lemma wf_times: "A \<inter> B = 0 ==> wf(A*B)"
 by (simp add: wf_def, blast)
 
 text{*Could also be used to prove @{text wf_radd}*}
 lemma wf_Un:
-     "[| range(r) Int domain(s) = 0; wf(r);  wf(s) |] ==> wf(r Un s)"
+     "[| range(r) \<inter> domain(s) = 0; wf(r);  wf(s) |] ==> wf(r \<union> s)"
 apply (simp add: wf_def, clarify) 
 apply (rule equalityI) 
  prefer 2 apply blast 
 apply clarify 
 apply (drule_tac x=Z in spec)
-apply (drule_tac x="Z Int domain(s)" in spec)
+apply (drule_tac x="Z \<inter> domain(s)" in spec)
 apply simp 
 apply (blast intro: elim: equalityE) 
 done
@@ -496,7 +496,7 @@
 lemma wf_measure [iff]: "wf(measure(A,f))"
 by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
 
-lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
+lemma measure_iff [iff]: "<x,y> \<in> measure(A,f) <-> x:A & y:A & f(x)<f(y)"
 by (simp (no_asm) add: measure_def)
 
 lemma linear_measure: 
@@ -521,7 +521,7 @@
 apply (blast intro: linear_measure Ordf inj) 
 done
 
-lemma measure_type: "measure(A,f) <= A*A"
+lemma measure_type: "measure(A,f) \<subseteq> A*A"
 by (auto simp add: measure_def)
 
 subsubsection{*Well-foundedness of Unions*}
@@ -549,7 +549,7 @@
 lemma Pow_sum_bij:
     "(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>)  
      \<in> bij(Pow(A+B), Pow(A)*Pow(B))"
-apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} Un {Inr (y). y \<in> Y}" 
+apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} \<union> {Inr (y). y \<in> Y}" 
        in lam_bijective)
 apply force+
 done