src/ZF/Trancl.thy
changeset 46820 c656222c4dc1
parent 45602 2a858377c3d2
child 46953 2b6e55924af3
--- a/src/ZF/Trancl.thy	Sun Mar 04 23:20:43 2012 +0100
+++ b/src/ZF/Trancl.thy	Tue Mar 06 15:15:49 2012 +0000
@@ -9,36 +9,36 @@
 
 definition
   refl     :: "[i,i]=>o"  where
-    "refl(A,r) == (ALL x: A. <x,x> : r)"
+    "refl(A,r) == (\<forall>x\<in>A. <x,x> \<in> r)"
 
 definition
   irrefl   :: "[i,i]=>o"  where
-    "irrefl(A,r) == ALL x: A. <x,x> ~: r"
+    "irrefl(A,r) == \<forall>x\<in>A. <x,x> \<notin> r"
 
 definition
   sym      :: "i=>o"  where
-    "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
+    "sym(r) == \<forall>x y. <x,y>: r \<longrightarrow> <y,x>: r"
 
 definition
   asym     :: "i=>o"  where
-    "asym(r) == ALL x y. <x,y>:r --> ~ <y,x>:r"
+    "asym(r) == \<forall>x y. <x,y>:r \<longrightarrow> ~ <y,x>:r"
 
 definition
   antisym  :: "i=>o"  where
-    "antisym(r) == ALL x y.<x,y>:r --> <y,x>:r --> x=y"
+    "antisym(r) == \<forall>x y.<x,y>:r \<longrightarrow> <y,x>:r \<longrightarrow> x=y"
 
 definition
   trans    :: "i=>o"  where
-    "trans(r) == ALL x y z. <x,y>: r --> <y,z>: r --> <x,z>: r"
+    "trans(r) == \<forall>x y z. <x,y>: r \<longrightarrow> <y,z>: r \<longrightarrow> <x,z>: r"
 
 definition
   trans_on :: "[i,i]=>o"  ("trans[_]'(_')")  where
-    "trans[A](r) == ALL x:A. ALL y:A. ALL z:A.       
-                          <x,y>: r --> <y,z>: r --> <x,z>: r"
+    "trans[A](r) == \<forall>x\<in>A. \<forall>y\<in>A. \<forall>z\<in>A.
+                          <x,y>: r \<longrightarrow> <y,z>: r \<longrightarrow> <x,z>: r"
 
 definition
   rtrancl :: "i=>i"  ("(_^*)" [100] 100)  (*refl/transitive closure*)  where
-    "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
+    "r^* == lfp(field(r)*field(r), %s. id(field(r)) \<union> (r O s))"
 
 definition
   trancl  :: "i=>i"  ("(_^+)" [100] 100)  (*transitive closure*)  where
@@ -46,7 +46,7 @@
 
 definition
   equiv    :: "[i,i]=>o"  where
-    "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)"
+    "equiv(A,r) == r \<subseteq> A*A & refl(A,r) & sym(r) & trans(r)"
 
 
 subsection{*General properties of relations*}
@@ -54,17 +54,17 @@
 subsubsection{*irreflexivity*}
 
 lemma irreflI:
-    "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)"
-by (simp add: irrefl_def) 
+    "[| !!x. x:A ==> <x,x> \<notin> r |] ==> irrefl(A,r)"
+by (simp add: irrefl_def)
 
-lemma irreflE: "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r"
+lemma irreflE: "[| irrefl(A,r);  x:A |] ==>  <x,x> \<notin> r"
 by (simp add: irrefl_def)
 
 subsubsection{*symmetry*}
 
 lemma symI:
      "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)"
-by (unfold sym_def, blast) 
+by (unfold sym_def, blast)
 
 lemma symE: "[| sym(r); <x,y>: r |]  ==>  <y,x>: r"
 by (unfold sym_def, blast)
@@ -73,7 +73,7 @@
 
 lemma antisymI:
      "[| !!x y.[| <x,y>: r;  <y,x>: r |] ==> x=y |] ==> antisym(r)"
-by (simp add: antisym_def, blast) 
+by (simp add: antisym_def, blast)
 
 lemma antisymE: "[| antisym(r); <x,y>: r;  <y,x>: r |]  ==>  x=y"
 by (simp add: antisym_def, blast)
@@ -83,62 +83,62 @@
 lemma transD: "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r"
 by (unfold trans_def, blast)
 
-lemma trans_onD: 
+lemma trans_onD:
     "[| trans[A](r);  <a,b>:r;  <b,c>:r;  a:A;  b:A;  c:A |] ==> <a,c>:r"
 by (unfold trans_on_def, blast)
 
 lemma trans_imp_trans_on: "trans(r) ==> trans[A](r)"
 by (unfold trans_def trans_on_def, blast)
 
-lemma trans_on_imp_trans: "[|trans[A](r); r <= A*A|] ==> trans(r)";
+lemma trans_on_imp_trans: "[|trans[A](r); r \<subseteq> A*A|] ==> trans(r)";
 by (simp add: trans_on_def trans_def, blast)
 
 
 subsection{*Transitive closure of a relation*}
 
 lemma rtrancl_bnd_mono:
-     "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))"
+     "bnd_mono(field(r)*field(r), %s. id(field(r)) \<union> (r O s))"
 by (rule bnd_monoI, blast+)
 
-lemma rtrancl_mono: "r<=s ==> r^* <= s^*"
+lemma rtrancl_mono: "r<=s ==> r^* \<subseteq> s^*"
 apply (unfold rtrancl_def)
 apply (rule lfp_mono)
 apply (rule rtrancl_bnd_mono)+
-apply blast 
+apply blast
 done
 
-(* r^* = id(field(r)) Un ( r O r^* )    *)
+(* @{term"r^* = id(field(r)) \<union> ( r O r^* )"}    *)
 lemmas rtrancl_unfold =
      rtrancl_bnd_mono [THEN rtrancl_def [THEN def_lfp_unfold]]
 
 (** The relation rtrancl **)
 
-(*  r^* <= field(r) * field(r)  *)
+(*  @{term"r^* \<subseteq> field(r) * field(r)"}  *)
 lemmas rtrancl_type = rtrancl_def [THEN def_lfp_subset]
 
 lemma relation_rtrancl: "relation(r^*)"
-apply (simp add: relation_def) 
-apply (blast dest: rtrancl_type [THEN subsetD]) 
+apply (simp add: relation_def)
+apply (blast dest: rtrancl_type [THEN subsetD])
 done
 
 (*Reflexivity of rtrancl*)
-lemma rtrancl_refl: "[| a: field(r) |] ==> <a,a> : r^*"
+lemma rtrancl_refl: "[| a: field(r) |] ==> <a,a> \<in> r^*"
 apply (rule rtrancl_unfold [THEN ssubst])
 apply (erule idI [THEN UnI1])
 done
 
 (*Closure under composition with r  *)
-lemma rtrancl_into_rtrancl: "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*"
+lemma rtrancl_into_rtrancl: "[| <a,b> \<in> r^*;  <b,c> \<in> r |] ==> <a,c> \<in> r^*"
 apply (rule rtrancl_unfold [THEN ssubst])
 apply (rule compI [THEN UnI2], assumption, assumption)
 done
 
 (*rtrancl of r contains all pairs in r  *)
-lemma r_into_rtrancl: "<a,b> : r ==> <a,b> : r^*"
+lemma r_into_rtrancl: "<a,b> \<in> r ==> <a,b> \<in> r^*"
 by (rule rtrancl_refl [THEN rtrancl_into_rtrancl], blast+)
 
 (*The premise ensures that r consists entirely of pairs*)
-lemma r_subset_rtrancl: "relation(r) ==> r <= r^*"
+lemma r_subset_rtrancl: "relation(r) ==> r \<subseteq> r^*"
 by (simp add: relation_def, blast intro: r_into_rtrancl)
 
 lemma rtrancl_field: "field(r^*) = field(r)"
@@ -148,22 +148,22 @@
 (** standard induction rule **)
 
 lemma rtrancl_full_induct [case_names initial step, consumes 1]:
-  "[| <a,b> : r^*;  
-      !!x. x: field(r) ==> P(<x,x>);  
-      !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]  
+  "[| <a,b> \<in> r^*;
+      !!x. x: field(r) ==> P(<x,x>);
+      !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]
    ==>  P(<a,b>)"
-by (erule def_induct [OF rtrancl_def rtrancl_bnd_mono], blast) 
+by (erule def_induct [OF rtrancl_def rtrancl_bnd_mono], blast)
 
 (*nice induction rule.
   Tried adding the typing hypotheses y,z:field(r), but these
   caused expensive case splits!*)
 lemma rtrancl_induct [case_names initial step, induct set: rtrancl]:
-  "[| <a,b> : r^*;                                               
-      P(a);                                                      
-      !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z)        
+  "[| <a,b> \<in> r^*;
+      P(a);
+      !!y z.[| <a,y> \<in> r^*;  <y,z> \<in> r;  P(y) |] ==> P(z)
    |] ==> P(b)"
 (*by induction on this formula*)
-apply (subgoal_tac "ALL y. <a,b> = <a,y> --> P (y) ")
+apply (subgoal_tac "\<forall>y. <a,b> = <a,y> \<longrightarrow> P (y) ")
 (*now solve first subgoal: this formula is sufficient*)
 apply (erule spec [THEN mp], rule refl)
 (*now do the induction*)
@@ -175,19 +175,19 @@
 apply (unfold trans_def)
 apply (intro allI impI)
 apply (erule_tac b = z in rtrancl_induct, assumption)
-apply (blast intro: rtrancl_into_rtrancl) 
+apply (blast intro: rtrancl_into_rtrancl)
 done
 
 lemmas rtrancl_trans = trans_rtrancl [THEN transD]
 
 (*elimination of rtrancl -- by induction on a special formula*)
 lemma rtranclE:
-    "[| <a,b> : r^*;  (a=b) ==> P;                        
-        !!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]       
+    "[| <a,b> \<in> r^*;  (a=b) ==> P;
+        !!y.[| <a,y> \<in> r^*;   <y,b> \<in> r |] ==> P |]
      ==> P"
-apply (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r) ")
+apply (subgoal_tac "a = b | (\<exists>y. <a,y> \<in> r^* & <y,b> \<in> r) ")
 (*see HOL/trancl*)
-apply blast 
+apply blast
 apply (erule rtrancl_induct, blast+)
 done
 
@@ -207,44 +207,44 @@
 
 (** Conversions between trancl and rtrancl **)
 
-lemma trancl_into_rtrancl: "<a,b> : r^+ ==> <a,b> : r^*"
+lemma trancl_into_rtrancl: "<a,b> \<in> r^+ ==> <a,b> \<in> r^*"
 apply (unfold trancl_def)
 apply (blast intro: rtrancl_into_rtrancl)
 done
 
 (*r^+ contains all pairs in r  *)
-lemma r_into_trancl: "<a,b> : r ==> <a,b> : r^+"
+lemma r_into_trancl: "<a,b> \<in> r ==> <a,b> \<in> r^+"
 apply (unfold trancl_def)
 apply (blast intro!: rtrancl_refl)
 done
 
 (*The premise ensures that r consists entirely of pairs*)
-lemma r_subset_trancl: "relation(r) ==> r <= r^+"
+lemma r_subset_trancl: "relation(r) ==> r \<subseteq> r^+"
 by (simp add: relation_def, blast intro: r_into_trancl)
 
 
 (*intro rule by definition: from r^* and r  *)
-lemma rtrancl_into_trancl1: "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+"
+lemma rtrancl_into_trancl1: "[| <a,b> \<in> r^*;  <b,c> \<in> r |]   ==>  <a,c> \<in> r^+"
 by (unfold trancl_def, blast)
 
 (*intro rule from r and r^*  *)
 lemma rtrancl_into_trancl2:
-    "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+"
+    "[| <a,b> \<in> r;  <b,c> \<in> r^* |]   ==>  <a,c> \<in> r^+"
 apply (erule rtrancl_induct)
  apply (erule r_into_trancl)
-apply (blast intro: r_into_trancl trancl_trans) 
+apply (blast intro: r_into_trancl trancl_trans)
 done
 
 (*Nice induction rule for trancl*)
 lemma trancl_induct [case_names initial step, induct set: trancl]:
-  "[| <a,b> : r^+;                                       
-      !!y.  [| <a,y> : r |] ==> P(y);                    
-      !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z)        
+  "[| <a,b> \<in> r^+;
+      !!y.  [| <a,y> \<in> r |] ==> P(y);
+      !!y z.[| <a,y> \<in> r^+;  <y,z> \<in> r;  P(y) |] ==> P(z)
    |] ==> P(b)"
 apply (rule compEpair)
 apply (unfold trancl_def, assumption)
 (*by induction on this formula*)
-apply (subgoal_tac "ALL z. <y,z> : r --> P (z) ")
+apply (subgoal_tac "\<forall>z. <y,z> \<in> r \<longrightarrow> P (z) ")
 (*now solve first subgoal: this formula is sufficient*)
  apply blast
 apply (erule rtrancl_induct)
@@ -253,40 +253,40 @@
 
 (*elimination of r^+ -- NOT an induction rule*)
 lemma tranclE:
-    "[| <a,b> : r^+;   
-        <a,b> : r ==> P;  
-        !!y.[| <a,y> : r^+; <y,b> : r |] ==> P   
+    "[| <a,b> \<in> r^+;
+        <a,b> \<in> r ==> P;
+        !!y.[| <a,y> \<in> r^+; <y,b> \<in> r |] ==> P
      |] ==> P"
-apply (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r) ")
-apply blast 
+apply (subgoal_tac "<a,b> \<in> r | (\<exists>y. <a,y> \<in> r^+ & <y,b> \<in> r) ")
+apply blast
 apply (rule compEpair)
 apply (unfold trancl_def, assumption)
 apply (erule rtranclE)
 apply (blast intro: rtrancl_into_trancl1)+
 done
 
-lemma trancl_type: "r^+ <= field(r)*field(r)"
+lemma trancl_type: "r^+ \<subseteq> field(r)*field(r)"
 apply (unfold trancl_def)
 apply (blast elim: rtrancl_type [THEN subsetD, THEN SigmaE2])
 done
 
 lemma relation_trancl: "relation(r^+)"
-apply (simp add: relation_def) 
-apply (blast dest: trancl_type [THEN subsetD]) 
+apply (simp add: relation_def)
+apply (blast dest: trancl_type [THEN subsetD])
 done
 
 lemma trancl_subset_times: "r \<subseteq> A * A ==> r^+ \<subseteq> A * A"
 by (insert trancl_type [of r], blast)
 
-lemma trancl_mono: "r<=s ==> r^+ <= s^+"
+lemma trancl_mono: "r<=s ==> r^+ \<subseteq> s^+"
 by (unfold trancl_def, intro comp_mono rtrancl_mono)
 
 lemma trancl_eq_r: "[|relation(r); trans(r)|] ==> r^+ = r"
 apply (rule equalityI)
- prefer 2 apply (erule r_subset_trancl, clarify) 
-apply (frule trancl_type [THEN subsetD], clarify) 
+ prefer 2 apply (erule r_subset_trancl, clarify)
+apply (frule trancl_type [THEN subsetD], clarify)
 apply (erule trancl_induct, assumption)
-apply (blast dest: transD) 
+apply (blast dest: transD)
 done
 
 
@@ -296,21 +296,21 @@
 apply (rule equalityI, auto)
  prefer 2
  apply (frule rtrancl_type [THEN subsetD])
- apply (blast intro: r_into_rtrancl ) 
+ apply (blast intro: r_into_rtrancl )
 txt{*converse direction*}
-apply (frule rtrancl_type [THEN subsetD], clarify) 
+apply (frule rtrancl_type [THEN subsetD], clarify)
 apply (erule rtrancl_induct)
 apply (simp add: rtrancl_refl rtrancl_field)
 apply (blast intro: rtrancl_trans)
 done
 
-lemma rtrancl_subset: "[| R <= S; S <= R^* |] ==> S^* = R^*"
+lemma rtrancl_subset: "[| R \<subseteq> S; S \<subseteq> R^* |] ==> S^* = R^*"
 apply (drule rtrancl_mono)
 apply (drule rtrancl_mono, simp_all, blast)
 done
 
 lemma rtrancl_Un_rtrancl:
-     "[| relation(r); relation(s) |] ==> (r^* Un s^*)^* = (r Un s)^*"
+     "[| relation(r); relation(s) |] ==> (r^* \<union> s^*)^* = (r \<union> s)^*"
 apply (rule rtrancl_subset)
 apply (blast dest: r_subset_rtrancl)
 apply (blast intro: rtrancl_mono [THEN subsetD])
@@ -362,8 +362,8 @@
 done
 
 lemma converse_trancl_induct [case_names initial step, consumes 1]:
-"[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);  
-      !!y z. [| <y, z> : r; <z, b> : r^+; P(z) |] ==> P(y) |]  
+"[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);
+      !!y z. [| <y, z> \<in> r; <z, b> \<in> r^+; P(z) |] ==> P(y) |]
        ==> P(a)"
 apply (drule converseI)
 apply (simp (no_asm_use) add: trancl_converse [symmetric])