src/ZF/ZF.thy
changeset 46820 c656222c4dc1
parent 46751 6b94c39b7366
child 46907 eea3eb057fea
--- a/src/ZF/ZF.thy	Sun Mar 04 23:20:43 2012 +0100
+++ b/src/ZF/ZF.thy	Tue Mar 06 15:15:49 2012 +0000
@@ -200,10 +200,10 @@
   0 Pow Inf Union PrimReplace mem
 
 defs  (* Bounded Quantifiers *)
-  Ball_def:      "Ball(A, P) == \<forall>x. x\<in>A --> P(x)"
+  Ball_def:      "Ball(A, P) == \<forall>x. x\<in>A \<longrightarrow> P(x)"
   Bex_def:       "Bex(A, P) == \<exists>x. x\<in>A & P(x)"
 
-  subset_def:    "A <= B == \<forall>x\<in>A. x\<in>B"
+  subset_def:    "A \<subseteq> B == \<forall>x\<in>A. x\<in>B"
 
 
 axiomatization where
@@ -212,18 +212,18 @@
      Axioms for Union, Pow and Replace state existence only,
      uniqueness is derivable using extensionality. *)
 
-  extension:     "A = B <-> A <= B & B <= A" and
-  Union_iff:     "A \<in> Union(C) <-> (\<exists>B\<in>C. A\<in>B)" and
-  Pow_iff:       "A \<in> Pow(B) <-> A <= B" and
+  extension:     "A = B <-> A \<subseteq> B & B \<subseteq> A" and
+  Union_iff:     "A \<in> \<Union>(C) <-> (\<exists>B\<in>C. A\<in>B)" and
+  Pow_iff:       "A \<in> Pow(B) <-> A \<subseteq> B" and
 
   (*We may name this set, though it is not uniquely defined.*)
   infinity:      "0\<in>Inf & (\<forall>y\<in>Inf. succ(y): Inf)" and
 
   (*This formulation facilitates case analysis on A.*)
-  foundation:    "A=0 | (\<exists>x\<in>A. \<forall>y\<in>x. y~:A)" and
+  foundation:    "A=0 | (\<exists>x\<in>A. \<forall>y\<in>x. y\<notin>A)" and
 
   (*Schema axiom since predicate P is a higher-order variable*)
-  replacement:   "(\<forall>x\<in>A. \<forall>y z. P(x,y) & P(x,z) --> y=z) ==>
+  replacement:   "(\<forall>x\<in>A. \<forall>y z. P(x,y) & P(x,z) \<longrightarrow> y=z) ==>
                          b \<in> PrimReplace(A,P) <-> (\<exists>x\<in>A. P(x,b))"
 
 
@@ -248,18 +248,18 @@
     set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
 
   Upair_def: "Upair(a,b) == {y. x\<in>Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
-  cons_def:  "cons(a,A) == Upair(a,a) Un A"
+  cons_def:  "cons(a,A) == Upair(a,a) \<union> A"
   succ_def:  "succ(i) == cons(i, i)"
 
   (* Difference, general intersection, binary union and small intersection *)
 
   Diff_def:      "A - B    == { x\<in>A . ~(x\<in>B) }"
-  Inter_def:     "Inter(A) == { x\<in>Union(A) . \<forall>y\<in>A. x\<in>y}"
-  Un_def:        "A Un  B  == Union(Upair(A,B))"
-  Int_def:      "A Int B  == Inter(Upair(A,B))"
+  Inter_def:     "\<Inter>(A) == { x\<in>\<Union>(A) . \<forall>y\<in>A. x\<in>y}"
+  Un_def:        "A \<union>  B  == \<Union>(Upair(A,B))"
+  Int_def:      "A \<inter> B  == \<Inter>(Upair(A,B))"
 
   (* definite descriptions *)
-  the_def:      "The(P)    == Union({y . x \<in> {0}, P(y)})"
+  the_def:      "The(P)    == \<Union>({y . x \<in> {0}, P(y)})"
   if_def:       "if(P,a,b) == THE z. P & z=a | ~P & z=b"
 
   (* this "symmetric" definition works better than {{a}, {a,b}} *)
@@ -276,21 +276,21 @@
 
   domain_def:   "domain(r) == {x. w\<in>r, \<exists>y. w=<x,y>}"
   range_def:    "range(r) == domain(converse(r))"
-  field_def:    "field(r) == domain(r) Un range(r)"
+  field_def:    "field(r) == domain(r) \<union> range(r)"
   relation_def: "relation(r) == \<forall>z\<in>r. \<exists>x y. z = <x,y>"
   function_def: "function(r) ==
-                    \<forall>x y. <x,y>:r --> (\<forall>y'. <x,y'>:r --> y=y')"
-  image_def:    "r `` A  == {y : range(r) . \<exists>x\<in>A. <x,y> : r}"
+                    \<forall>x y. <x,y>:r \<longrightarrow> (\<forall>y'. <x,y'>:r \<longrightarrow> y=y')"
+  image_def:    "r `` A  == {y \<in> range(r) . \<exists>x\<in>A. <x,y> \<in> r}"
   vimage_def:   "r -`` A == converse(r)``A"
 
   (* Abstraction, application and Cartesian product of a family of sets *)
 
   lam_def:      "Lambda(A,b) == {<x,b(x)> . x\<in>A}"
-  apply_def:    "f`a == Union(f``{a})"
+  apply_def:    "f`a == \<Union>(f``{a})"
   Pi_def:       "Pi(A,B)  == {f\<in>Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
 
   (* Restrict the relation r to the domain A *)
-  restrict_def: "restrict(r,A) == {z : r. \<exists>x\<in>A. \<exists>y. z = <x,y>}"
+  restrict_def: "restrict(r,A) == {z \<in> r. \<exists>x\<in>A. \<exists>y. z = <x,y>}"
 
 
 subsection {* Substitution*}
@@ -311,19 +311,19 @@
 by (simp add: Ball_def)
 
 (*Instantiates x first: better for automatic theorem proving?*)
-lemma rev_ballE [elim]: 
-    "[| \<forall>x\<in>A. P(x);  x~:A ==> Q;  P(x) ==> Q |] ==> Q"
-by (simp add: Ball_def, blast) 
+lemma rev_ballE [elim]:
+    "[| \<forall>x\<in>A. P(x);  x\<notin>A ==> Q;  P(x) ==> Q |] ==> Q"
+by (simp add: Ball_def, blast)
 
-lemma ballE: "[| \<forall>x\<in>A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q"
+lemma ballE: "[| \<forall>x\<in>A. P(x);  P(x) ==> Q;  x\<notin>A ==> Q |] ==> Q"
 by blast
 
 (*Used in the datatype package*)
 lemma rev_bspec: "[| x: A;  \<forall>x\<in>A. P(x) |] ==> P(x)"
 by (simp add: Ball_def)
 
-(*Trival rewrite rule;   (\<forall>x\<in>A.P)<->P holds only if A is nonempty!*)
-lemma ball_triv [simp]: "(\<forall>x\<in>A. P) <-> ((\<exists>x. x\<in>A) --> P)"
+(*Trival rewrite rule;   @{term"(\<forall>x\<in>A.P)<->P"} holds only if A is nonempty!*)
+lemma ball_triv [simp]: "(\<forall>x\<in>A. P) <-> ((\<exists>x. x\<in>A) \<longrightarrow> P)"
 by (simp add: Ball_def)
 
 (*Congruence rule for rewriting*)
@@ -344,23 +344,23 @@
 lemma bexI [intro]: "[| P(x);  x: A |] ==> \<exists>x\<in>A. P(x)"
 by (simp add: Bex_def, blast)
 
-(*The best argument order when there is only one x\<in>A*)
+(*The best argument order when there is only one @{term"x\<in>A"}*)
 lemma rev_bexI: "[| x\<in>A;  P(x) |] ==> \<exists>x\<in>A. P(x)"
 by blast
 
-(*Not of the general form for such rules; ~\<exists>has become ALL~ *)
+(*Not of the general form for such rules. The existential quanitifer becomes universal. *)
 lemma bexCI: "[| \<forall>x\<in>A. ~P(x) ==> P(a);  a: A |] ==> \<exists>x\<in>A. P(x)"
 by blast
 
 lemma bexE [elim!]: "[| \<exists>x\<in>A. P(x);  !!x. [| x\<in>A; P(x) |] ==> Q |] ==> Q"
 by (simp add: Bex_def, blast)
 
-(*We do not even have (\<exists>x\<in>A. True) <-> True unless A is nonempty!!*)
+(*We do not even have @{term"(\<exists>x\<in>A. True) <-> True"} unless @{term"A" is nonempty!!*)
 lemma bex_triv [simp]: "(\<exists>x\<in>A. P) <-> ((\<exists>x. x\<in>A) & P)"
 by (simp add: Bex_def)
 
 lemma bex_cong [cong]:
-    "[| A=A';  !!x. x\<in>A' ==> P(x) <-> P'(x) |] 
+    "[| A=A';  !!x. x\<in>A' ==> P(x) <-> P'(x) |]
      ==> (\<exists>x\<in>A. P(x)) <-> (\<exists>x\<in>A'. P'(x))"
 by (simp add: Bex_def cong: conj_cong)
 
@@ -369,39 +369,39 @@
 subsection{*Rules for subsets*}
 
 lemma subsetI [intro!]:
-    "(!!x. x\<in>A ==> x\<in>B) ==> A <= B"
-by (simp add: subset_def) 
+    "(!!x. x\<in>A ==> x\<in>B) ==> A \<subseteq> B"
+by (simp add: subset_def)
 
 (*Rule in Modus Ponens style [was called subsetE] *)
-lemma subsetD [elim]: "[| A <= B;  c\<in>A |] ==> c\<in>B"
+lemma subsetD [elim]: "[| A \<subseteq> B;  c\<in>A |] ==> c\<in>B"
 apply (unfold subset_def)
 apply (erule bspec, assumption)
 done
 
 (*Classical elimination rule*)
 lemma subsetCE [elim]:
-    "[| A <= B;  c~:A ==> P;  c\<in>B ==> P |] ==> P"
-by (simp add: subset_def, blast) 
+    "[| A \<subseteq> B;  c\<notin>A ==> P;  c\<in>B ==> P |] ==> P"
+by (simp add: subset_def, blast)
 
 (*Sometimes useful with premises in this order*)
 lemma rev_subsetD: "[| c\<in>A; A<=B |] ==> c\<in>B"
 by blast
 
-lemma contra_subsetD: "[| A <= B; c ~: B |] ==> c ~: A"
+lemma contra_subsetD: "[| A \<subseteq> B; c \<notin> B |] ==> c \<notin> A"
 by blast
 
-lemma rev_contra_subsetD: "[| c ~: B;  A <= B |] ==> c ~: A"
+lemma rev_contra_subsetD: "[| c \<notin> B;  A \<subseteq> B |] ==> c \<notin> A"
 by blast
 
-lemma subset_refl [simp]: "A <= A"
+lemma subset_refl [simp]: "A \<subseteq> A"
 by blast
 
 lemma subset_trans: "[| A<=B;  B<=C |] ==> A<=C"
 by blast
 
 (*Useful for proving A<=B by rewriting in some cases*)
-lemma subset_iff: 
-     "A<=B <-> (\<forall>x. x\<in>A --> x\<in>B)"
+lemma subset_iff:
+     "A<=B <-> (\<forall>x. x\<in>A \<longrightarrow> x\<in>B)"
 apply (unfold subset_def Ball_def)
 apply (rule iff_refl)
 done
@@ -410,8 +410,8 @@
 subsection{*Rules for equality*}
 
 (*Anti-symmetry of the subset relation*)
-lemma equalityI [intro]: "[| A <= B;  B <= A |] ==> A = B"
-by (rule extension [THEN iffD2], rule conjI) 
+lemma equalityI [intro]: "[| A \<subseteq> B;  B \<subseteq> A |] ==> A = B"
+by (rule extension [THEN iffD2], rule conjI)
 
 
 lemma equality_iffI: "(!!x. x\<in>A <-> x\<in>B) ==> A = B"
@@ -421,75 +421,75 @@
 lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]
 
 lemma equalityE: "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
-by (blast dest: equalityD1 equalityD2) 
+by (blast dest: equalityD1 equalityD2)
 
 lemma equalityCE:
-    "[| A = B;  [| c\<in>A; c\<in>B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P"
-by (erule equalityE, blast) 
+    "[| A = B;  [| c\<in>A; c\<in>B |] ==> P;  [| c\<notin>A; c\<notin>B |] ==> P |]  ==>  P"
+by (erule equalityE, blast)
 
 lemma equality_iffD:
-  "A = B ==> (!!x. x : A <-> x : B)"
+  "A = B ==> (!!x. x \<in> A <-> x \<in> B)"
   by auto
 
 
 subsection{*Rules for Replace -- the derived form of replacement*}
 
-lemma Replace_iff: 
-    "b : {y. x\<in>A, P(x,y)}  <->  (\<exists>x\<in>A. P(x,b) & (\<forall>y. P(x,y) --> y=b))"
+lemma Replace_iff:
+    "b \<in> {y. x\<in>A, P(x,y)}  <->  (\<exists>x\<in>A. P(x,b) & (\<forall>y. P(x,y) \<longrightarrow> y=b))"
 apply (unfold Replace_def)
 apply (rule replacement [THEN iff_trans], blast+)
 done
 
 (*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
-lemma ReplaceI [intro]: 
-    "[| P(x,b);  x: A;  !!y. P(x,y) ==> y=b |] ==>  
-     b : {y. x\<in>A, P(x,y)}"
-by (rule Replace_iff [THEN iffD2], blast) 
+lemma ReplaceI [intro]:
+    "[| P(x,b);  x: A;  !!y. P(x,y) ==> y=b |] ==>
+     b \<in> {y. x\<in>A, P(x,y)}"
+by (rule Replace_iff [THEN iffD2], blast)
 
 (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
-lemma ReplaceE: 
-    "[| b : {y. x\<in>A, P(x,y)};   
-        !!x. [| x: A;  P(x,b);  \<forall>y. P(x,y)-->y=b |] ==> R  
+lemma ReplaceE:
+    "[| b \<in> {y. x\<in>A, P(x,y)};
+        !!x. [| x: A;  P(x,b);  \<forall>y. P(x,y)\<longrightarrow>y=b |] ==> R
      |] ==> R"
 by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)
 
 (*As above but without the (generally useless) 3rd assumption*)
-lemma ReplaceE2 [elim!]: 
-    "[| b : {y. x\<in>A, P(x,y)};   
-        !!x. [| x: A;  P(x,b) |] ==> R  
+lemma ReplaceE2 [elim!]:
+    "[| b \<in> {y. x\<in>A, P(x,y)};
+        !!x. [| x: A;  P(x,b) |] ==> R
      |] ==> R"
-by (erule ReplaceE, blast) 
+by (erule ReplaceE, blast)
 
 lemma Replace_cong [cong]:
-    "[| A=B;  !!x y. x\<in>B ==> P(x,y) <-> Q(x,y) |] ==>  
+    "[| A=B;  !!x y. x\<in>B ==> P(x,y) <-> Q(x,y) |] ==>
      Replace(A,P) = Replace(B,Q)"
-apply (rule equality_iffI) 
-apply (simp add: Replace_iff) 
+apply (rule equality_iffI)
+apply (simp add: Replace_iff)
 done
 
 
 subsection{*Rules for RepFun*}
 
-lemma RepFunI: "a \<in> A ==> f(a) : {f(x). x\<in>A}"
+lemma RepFunI: "a \<in> A ==> f(a) \<in> {f(x). x\<in>A}"
 by (simp add: RepFun_def Replace_iff, blast)
 
 (*Useful for coinduction proofs*)
-lemma RepFun_eqI [intro]: "[| b=f(a);  a \<in> A |] ==> b : {f(x). x\<in>A}"
+lemma RepFun_eqI [intro]: "[| b=f(a);  a \<in> A |] ==> b \<in> {f(x). x\<in>A}"
 apply (erule ssubst)
 apply (erule RepFunI)
 done
 
 lemma RepFunE [elim!]:
-    "[| b : {f(x). x\<in>A};   
-        !!x.[| x\<in>A;  b=f(x) |] ==> P |] ==>  
+    "[| b \<in> {f(x). x\<in>A};
+        !!x.[| x\<in>A;  b=f(x) |] ==> P |] ==>
      P"
-by (simp add: RepFun_def Replace_iff, blast) 
+by (simp add: RepFun_def Replace_iff, blast)
 
-lemma RepFun_cong [cong]: 
+lemma RepFun_cong [cong]:
     "[| A=B;  !!x. x\<in>B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
 by (simp add: RepFun_def)
 
-lemma RepFun_iff [simp]: "b : {f(x). x\<in>A} <-> (\<exists>x\<in>A. b=f(x))"
+lemma RepFun_iff [simp]: "b \<in> {f(x). x\<in>A} <-> (\<exists>x\<in>A. b=f(x))"
 by (unfold Bex_def, blast)
 
 lemma triv_RepFun [simp]: "{x. x\<in>A} = A"
@@ -499,23 +499,23 @@
 subsection{*Rules for Collect -- forming a subset by separation*}
 
 (*Separation is derivable from Replacement*)
-lemma separation [simp]: "a : {x\<in>A. P(x)} <-> a\<in>A & P(a)"
+lemma separation [simp]: "a \<in> {x\<in>A. P(x)} <-> a\<in>A & P(a)"
 by (unfold Collect_def, blast)
 
-lemma CollectI [intro!]: "[| a\<in>A;  P(a) |] ==> a : {x\<in>A. P(x)}"
+lemma CollectI [intro!]: "[| a\<in>A;  P(a) |] ==> a \<in> {x\<in>A. P(x)}"
 by simp
 
-lemma CollectE [elim!]: "[| a : {x\<in>A. P(x)};  [| a\<in>A; P(a) |] ==> R |] ==> R"
+lemma CollectE [elim!]: "[| a \<in> {x\<in>A. P(x)};  [| a\<in>A; P(a) |] ==> R |] ==> R"
 by simp
 
-lemma CollectD1: "a : {x\<in>A. P(x)} ==> a\<in>A"
+lemma CollectD1: "a \<in> {x\<in>A. P(x)} ==> a\<in>A"
 by (erule CollectE, assumption)
 
-lemma CollectD2: "a : {x\<in>A. P(x)} ==> P(a)"
+lemma CollectD2: "a \<in> {x\<in>A. P(x)} ==> P(a)"
 by (erule CollectE, assumption)
 
 lemma Collect_cong [cong]:
-    "[| A=B;  !!x. x\<in>B ==> P(x) <-> Q(x) |]  
+    "[| A=B;  !!x. x\<in>B ==> P(x) <-> Q(x) |]
      ==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"
 by (simp add: Collect_def)
 
@@ -525,17 +525,17 @@
 declare Union_iff [simp]
 
 (*The order of the premises presupposes that C is rigid; A may be flexible*)
-lemma UnionI [intro]: "[| B: C;  A: B |] ==> A: Union(C)"
+lemma UnionI [intro]: "[| B: C;  A: B |] ==> A: \<Union>(C)"
 by (simp, blast)
 
-lemma UnionE [elim!]: "[| A \<in> Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
+lemma UnionE [elim!]: "[| A \<in> \<Union>(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
 by (simp, blast)
 
 
 subsection{*Rules for Unions of families*}
-(* \<Union>x\<in>A. B(x) abbreviates Union({B(x). x\<in>A}) *)
+(* @{term"\<Union>x\<in>A. B(x)"} abbreviates @{term"\<Union>({B(x). x\<in>A})"} *)
 
-lemma UN_iff [simp]: "b : (\<Union>x\<in>A. B(x)) <-> (\<exists>x\<in>A. b \<in> B(x))"
+lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B(x)) <-> (\<exists>x\<in>A. b \<in> B(x))"
 by (simp add: Bex_def, blast)
 
 (*The order of the premises presupposes that A is rigid; b may be flexible*)
@@ -543,16 +543,16 @@
 by (simp, blast)
 
 
-lemma UN_E [elim!]: 
-    "[| b : (\<Union>x\<in>A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
-by blast 
+lemma UN_E [elim!]:
+    "[| b \<in> (\<Union>x\<in>A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
+by blast
 
-lemma UN_cong: 
+lemma UN_cong:
     "[| A=B;  !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Union>x\<in>A. C(x)) = (\<Union>x\<in>B. D(x))"
-by simp 
+by simp
 
 
-(*No "Addcongs [UN_cong]" because \<Union>is a combination of constants*)
+(*No "Addcongs [UN_cong]" because @{term\<Union>} is a combination of constants*)
 
 (* UN_E appears before UnionE so that it is tried first, to avoid expensive
   calls to hyp_subst_tac.  Cannot include UN_I as it is unsafe: would enlarge
@@ -561,9 +561,9 @@
 
 subsection{*Rules for the empty set*}
 
-(*The set {x\<in>0. False} is empty; by foundation it equals 0 
+(*The set @{term"{x\<in>0. False}"} is empty; by foundation it equals 0
   See Suppes, page 21.*)
-lemma not_mem_empty [simp]: "a ~: 0"
+lemma not_mem_empty [simp]: "a \<notin> 0"
 apply (cut_tac foundation)
 apply (best dest: equalityD2)
 done
@@ -571,69 +571,69 @@
 lemmas emptyE [elim!] = not_mem_empty [THEN notE]
 
 
-lemma empty_subsetI [simp]: "0 <= A"
-by blast 
+lemma empty_subsetI [simp]: "0 \<subseteq> A"
+by blast
 
 lemma equals0I: "[| !!y. y\<in>A ==> False |] ==> A=0"
 by blast
 
-lemma equals0D [dest]: "A=0 ==> a ~: A"
+lemma equals0D [dest]: "A=0 ==> a \<notin> A"
 by blast
 
 declare sym [THEN equals0D, dest]
 
-lemma not_emptyI: "a\<in>A ==> A ~= 0"
+lemma not_emptyI: "a\<in>A ==> A \<noteq> 0"
 by blast
 
-lemma not_emptyE:  "[| A ~= 0;  !!x. x\<in>A ==> R |] ==> R"
+lemma not_emptyE:  "[| A \<noteq> 0;  !!x. x\<in>A ==> R |] ==> R"
 by blast
 
 
 subsection{*Rules for Inter*}
 
 (*Not obviously useful for proving InterI, InterD, InterE*)
-lemma Inter_iff: "A \<in> Inter(C) <-> (\<forall>x\<in>C. A: x) & C\<noteq>0"
+lemma Inter_iff: "A \<in> \<Inter>(C) <-> (\<forall>x\<in>C. A: x) & C\<noteq>0"
 by (simp add: Inter_def Ball_def, blast)
 
 (* Intersection is well-behaved only if the family is non-empty! *)
-lemma InterI [intro!]: 
-    "[| !!x. x: C ==> A: x;  C\<noteq>0 |] ==> A \<in> Inter(C)"
+lemma InterI [intro!]:
+    "[| !!x. x: C ==> A: x;  C\<noteq>0 |] ==> A \<in> \<Inter>(C)"
 by (simp add: Inter_iff)
 
 (*A "destruct" rule -- every B in C contains A as an element, but
   A\<in>B can hold when B\<in>C does not!  This rule is analogous to "spec". *)
-lemma InterD [elim, Pure.elim]: "[| A \<in> Inter(C);  B \<in> C |] ==> A \<in> B"
+lemma InterD [elim, Pure.elim]: "[| A \<in> \<Inter>(C);  B \<in> C |] ==> A \<in> B"
 by (unfold Inter_def, blast)
 
-(*"Classical" elimination rule -- does not require exhibiting B\<in>C *)
-lemma InterE [elim]: 
-    "[| A \<in> Inter(C);  B~:C ==> R;  A\<in>B ==> R |] ==> R"
-by (simp add: Inter_def, blast) 
-  
+(*"Classical" elimination rule -- does not require exhibiting @{term"B\<in>C"} *)
+lemma InterE [elim]:
+    "[| A \<in> \<Inter>(C);  B\<notin>C ==> R;  A\<in>B ==> R |] ==> R"
+by (simp add: Inter_def, blast)
+
 
 subsection{*Rules for Intersections of families*}
 
-(* \<Inter>x\<in>A. B(x) abbreviates Inter({B(x). x\<in>A}) *)
+(* @{term"\<Inter>x\<in>A. B(x)"} abbreviates @{term"\<Inter>({B(x). x\<in>A})"} *)
 
-lemma INT_iff: "b : (\<Inter>x\<in>A. B(x)) <-> (\<forall>x\<in>A. b \<in> B(x)) & A\<noteq>0"
+lemma INT_iff: "b \<in> (\<Inter>x\<in>A. B(x)) <-> (\<forall>x\<in>A. b \<in> B(x)) & A\<noteq>0"
 by (force simp add: Inter_def)
 
 lemma INT_I: "[| !!x. x: A ==> b: B(x);  A\<noteq>0 |] ==> b: (\<Inter>x\<in>A. B(x))"
 by blast
 
-lemma INT_E: "[| b : (\<Inter>x\<in>A. B(x));  a: A |] ==> b \<in> B(a)"
+lemma INT_E: "[| b \<in> (\<Inter>x\<in>A. B(x));  a: A |] ==> b \<in> B(a)"
 by blast
 
 lemma INT_cong:
     "[| A=B;  !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Inter>x\<in>A. C(x)) = (\<Inter>x\<in>B. D(x))"
 by simp
 
-(*No "Addcongs [INT_cong]" because \<Inter>is a combination of constants*)
+(*No "Addcongs [INT_cong]" because @{term\<Inter>} is a combination of constants*)
 
 
 subsection{*Rules for Powersets*}
 
-lemma PowI: "A <= B ==> A \<in> Pow(B)"
+lemma PowI: "A \<subseteq> B ==> A \<in> Pow(B)"
 by (erule Pow_iff [THEN iffD2])
 
 lemma PowD: "A \<in> Pow(B)  ==>  A<=B"
@@ -641,16 +641,16 @@
 
 declare Pow_iff [iff]
 
-lemmas Pow_bottom = empty_subsetI [THEN PowI] (* 0 \<in> Pow(B) *)
-lemmas Pow_top = subset_refl [THEN PowI] (* A \<in> Pow(A) *)
+lemmas Pow_bottom = empty_subsetI [THEN PowI]    --{* @{term"0 \<in> Pow(B)"} *}
+lemmas Pow_top = subset_refl [THEN PowI]         --{* @{term"A \<in> Pow(A)"} *}
 
 
 subsection{*Cantor's Theorem: There is no surjection from a set to its powerset.*}
 
-(*The search is undirected.  Allowing redundant introduction rules may 
+(*The search is undirected.  Allowing redundant introduction rules may
   make it diverge.  Variable b represents ANY map, such as
   (lam x\<in>A.b(x)): A->Pow(A). *)
-lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) ~= S"
+lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) \<noteq> S"
 by (best elim!: equalityCE del: ReplaceI RepFun_eqI)
 
 end