src/HOL/Complex_Analysis/Meromorphic.thy
changeset 77277 c6b50597abbc
child 78698 1b9388e6eb75
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Complex_Analysis/Meromorphic.thy	Thu Feb 16 12:21:21 2023 +0000
@@ -0,0 +1,2333 @@
+theory Meromorphic
+  imports Laurent_Convergence Riemann_Mapping
+begin
+
+lemma analytic_at_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (nhds x)" "x = y"
+  shows "f analytic_on {x} \<longleftrightarrow> g analytic_on {y}"
+proof -
+  have "g analytic_on {x}" if "f analytic_on {x}" "eventually (\<lambda>x. f x = g x) (nhds x)" for f g
+  proof -
+    have "(\<lambda>y. f (x + y)) has_fps_expansion fps_expansion f x"
+      by (rule analytic_at_imp_has_fps_expansion) fact
+    also have "?this \<longleftrightarrow> (\<lambda>y. g (x + y)) has_fps_expansion fps_expansion f x"
+      using that by (intro has_fps_expansion_cong refl) (auto simp: nhds_to_0' eventually_filtermap)
+    finally show ?thesis
+      by (rule has_fps_expansion_imp_analytic)
+  qed
+  from this[of f g] this[of g f] show ?thesis using assms
+    by (auto simp: eq_commute)
+qed
+
+definition remove_sings :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex" where
+  "remove_sings f z = (if \<exists>c. f \<midarrow>z\<rightarrow> c then Lim (at z) f else 0)"
+
+lemma remove_sings_eqI [intro]:
+  assumes "f \<midarrow>z\<rightarrow> c"
+  shows   "remove_sings f z = c"
+  using assms unfolding remove_sings_def by (auto simp: tendsto_Lim)
+
+lemma remove_sings_at_analytic [simp]:
+  assumes "f analytic_on {z}"
+  shows   "remove_sings f z = f z"
+  using assms by (intro remove_sings_eqI) (simp add: analytic_at_imp_isCont isContD)
+
+lemma remove_sings_at_pole [simp]:
+  assumes "is_pole f z"
+  shows   "remove_sings f z = 0"
+  using assms unfolding remove_sings_def is_pole_def
+  by (meson at_neq_bot not_tendsto_and_filterlim_at_infinity)
+
+lemma eventually_remove_sings_eq_at:
+  assumes "isolated_singularity_at f z"
+  shows   "eventually (\<lambda>w. remove_sings f w = f w) (at z)"
+proof -
+  from assms obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    by (auto simp: isolated_singularity_at_def)
+  hence *: "f analytic_on {w}" if "w \<in> ball z r - {z}" for w
+    using r that by (auto intro: analytic_on_subset)
+  have "eventually (\<lambda>w. w \<in> ball z r - {z}) (at z)"
+    using r by (intro eventually_at_in_open) auto
+  thus ?thesis
+    by eventually_elim (auto simp: remove_sings_at_analytic *)
+qed
+
+lemma eventually_remove_sings_eq_nhds:
+  assumes "f analytic_on {z}"
+  shows   "eventually (\<lambda>w. remove_sings f w = f w) (nhds z)"
+proof -
+  from assms obtain A where A: "open A" "z \<in> A" "f holomorphic_on A"
+    by (auto simp: analytic_at)
+  have "eventually (\<lambda>z. z \<in> A) (nhds z)"
+    by (intro eventually_nhds_in_open A)
+  thus ?thesis
+  proof eventually_elim
+    case (elim w)
+    from elim have "f analytic_on {w}"
+      using A analytic_at by blast
+    thus ?case by auto
+  qed
+qed
+
+lemma remove_sings_compose:
+  assumes "filtermap g (at z) = at z'"
+  shows   "remove_sings (f \<circ> g) z = remove_sings f z'"
+proof (cases "\<exists>c. f \<midarrow>z'\<rightarrow> c")
+  case True
+  then obtain c where c: "f \<midarrow>z'\<rightarrow> c"
+    by auto
+  from c have "remove_sings f z' = c"
+    by blast
+  moreover from c have "remove_sings (f \<circ> g) z = c"
+    using c by (intro remove_sings_eqI) (auto simp: filterlim_def filtermap_compose assms)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  hence "\<not>(\<exists>c. (f \<circ> g) \<midarrow>z\<rightarrow> c)"
+    by (auto simp: filterlim_def filtermap_compose assms)
+  with False show ?thesis
+    by (auto simp: remove_sings_def)
+qed
+
+lemma remove_sings_cong:
+  assumes "eventually (\<lambda>x. f x = g x) (at z)" "z = z'"
+  shows   "remove_sings f z = remove_sings g z'"
+proof (cases "\<exists>c. f \<midarrow>z\<rightarrow> c")
+  case True
+  then obtain c where c: "f \<midarrow>z\<rightarrow> c" by blast
+  hence "remove_sings f z = c"
+    by blast
+  moreover have "f \<midarrow>z\<rightarrow> c \<longleftrightarrow> g \<midarrow>z'\<rightarrow> c"
+    using assms by (intro filterlim_cong refl) auto
+  with c have "remove_sings g z' = c"
+    by (intro remove_sings_eqI) auto
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  have "f \<midarrow>z\<rightarrow> c \<longleftrightarrow> g \<midarrow>z'\<rightarrow> c" for c
+    using assms by (intro filterlim_cong) auto
+  with False show ?thesis
+    by (auto simp: remove_sings_def)
+qed
+
+
+lemma deriv_remove_sings_at_analytic [simp]:
+  assumes "f analytic_on {z}"
+  shows   "deriv (remove_sings f) z = deriv f z"
+  apply (rule deriv_cong_ev)
+  apply (rule eventually_remove_sings_eq_nhds)
+  using assms by auto
+
+lemma isolated_singularity_at_remove_sings [simp, intro]:
+  assumes "isolated_singularity_at f z"
+  shows   "isolated_singularity_at (remove_sings f) z"
+  using isolated_singularity_at_cong[OF eventually_remove_sings_eq_at[OF assms] refl] assms
+  by simp
+
+lemma not_essential_remove_sings_iff [simp]:
+  assumes "isolated_singularity_at f z"
+  shows   "not_essential (remove_sings f) z \<longleftrightarrow> not_essential f z"
+  using not_essential_cong[OF eventually_remove_sings_eq_at[OF assms(1)] refl]
+  by simp
+
+lemma not_essential_remove_sings [intro]:
+  assumes "isolated_singularity_at f z" "not_essential f z"
+  shows   "not_essential (remove_sings f) z"
+  by (subst not_essential_remove_sings_iff) (use assms in auto)
+
+lemma
+  assumes "isolated_singularity_at f z"
+  shows is_pole_remove_sings_iff [simp]:
+        "is_pole (remove_sings f) z \<longleftrightarrow> is_pole f z"
+  and zorder_remove_sings [simp]:
+        "zorder (remove_sings f) z = zorder f z"
+  and zor_poly_remove_sings [simp]:
+        "zor_poly (remove_sings f) z = zor_poly f z"
+  and has_laurent_expansion_remove_sings_iff [simp]:
+        "(\<lambda>w. remove_sings f (z + w)) has_laurent_expansion F \<longleftrightarrow>
+         (\<lambda>w. f (z + w)) has_laurent_expansion F"
+  and tendsto_remove_sings_iff [simp]:
+        "remove_sings f \<midarrow>z\<rightarrow> c \<longleftrightarrow> f \<midarrow>z\<rightarrow> c"
+  by (intro is_pole_cong eventually_remove_sings_eq_at refl zorder_cong
+            zor_poly_cong has_laurent_expansion_cong' tendsto_cong assms)+
+
+lemma get_all_poles_from_remove_sings:
+  fixes f:: "complex \<Rightarrow> complex"
+  defines "ff\<equiv>remove_sings f"
+  assumes f_holo:"f holomorphic_on s - pts" and "finite pts" 
+    "pts\<subseteq>s" "open s" and not_ess:"\<forall>x\<in>pts. not_essential f x"
+  obtains pts' where 
+    "pts' \<subseteq> pts" "finite pts'" "ff holomorphic_on s - pts'" "\<forall>x\<in>pts'. is_pole ff x"
+proof -
+  define pts' where "pts' = {x\<in>pts. is_pole f x}"
+
+  have "pts' \<subseteq> pts" unfolding pts'_def by auto
+  then have "finite pts'" using \<open>finite pts\<close> 
+    using rev_finite_subset by blast
+  then have "open (s - pts')" using \<open>open s\<close>
+    by (simp add: finite_imp_closed open_Diff)
+
+  have isolated:"isolated_singularity_at f z" if "z\<in>pts" for z
+  proof (rule isolated_singularity_at_holomorphic)
+    show "f holomorphic_on (s-(pts-{z})) - {z}" 
+      by (metis Diff_insert f_holo insert_Diff that)
+    show " open (s - (pts - {z}))" 
+      by (meson assms(3) assms(5) finite_Diff finite_imp_closed open_Diff)
+    show "z \<in> s - (pts - {z})" 
+      using assms(4) that by auto
+  qed
+
+  have "ff holomorphic_on s - pts'"
+  proof (rule no_isolated_singularity')
+    show "(ff \<longlongrightarrow> ff z) (at z within s - pts')" if "z \<in> pts-pts'" for z
+    proof -
+      have "at z within s - pts' = at z"
+        apply (rule at_within_open)
+        using \<open>open (s - pts')\<close> that \<open>pts\<subseteq>s\<close>  by auto
+      moreover have "ff \<midarrow>z\<rightarrow> ff z"
+        unfolding ff_def
+      proof (subst tendsto_remove_sings_iff)
+        show "isolated_singularity_at f z"
+          apply (rule isolated)
+          using that by auto
+        have "not_essential f z" 
+          using not_ess that by auto
+        moreover have "\<not>is_pole f z"
+          using that unfolding pts'_def by auto
+        ultimately have "\<exists>c. f \<midarrow>z\<rightarrow> c" 
+          unfolding not_essential_def by auto
+        then show "f \<midarrow>z\<rightarrow> remove_sings f z"
+          using remove_sings_eqI by blast
+      qed
+      ultimately show ?thesis by auto
+    qed
+    have "ff holomorphic_on s - pts"
+      using f_holo 
+    proof (elim holomorphic_transform)
+      fix x assume "x \<in> s - pts"
+      then have "f analytic_on {x}" 
+        using assms(3) assms(5) f_holo
+        by (meson finite_imp_closed 
+            holomorphic_on_imp_analytic_at open_Diff) 
+      from remove_sings_at_analytic[OF this]
+      show "f x = ff x" unfolding ff_def by auto 
+    qed
+    then show "ff holomorphic_on s - pts' - (pts - pts')"
+      apply (elim holomorphic_on_subset)
+      by blast
+    show "open (s - pts')" 
+      by (simp add: \<open>open (s - pts')\<close>)
+    show "finite (pts - pts')" 
+      by (simp add: assms(3))
+  qed
+  moreover have "\<forall>x\<in>pts'. is_pole ff x"
+    unfolding pts'_def 
+    using ff_def is_pole_remove_sings_iff isolated by blast
+  moreover note \<open>pts' \<subseteq> pts\<close> \<open>finite pts'\<close> 
+  ultimately show ?thesis using that by auto
+qed
+
+lemma remove_sings_eq_0_iff:
+  assumes "not_essential f w"
+  shows "remove_sings f w = 0 \<longleftrightarrow> is_pole f w \<or> f \<midarrow>w\<rightarrow> 0"
+proof (cases "is_pole f w")
+  case True
+  then show ?thesis by simp
+next
+  case False
+  then obtain c where c:"f \<midarrow>w\<rightarrow> c"
+    using \<open>not_essential f w\<close> unfolding not_essential_def by auto
+  then show ?thesis 
+    using False remove_sings_eqI by auto
+qed
+
+definition meromorphic_on:: "[complex \<Rightarrow> complex, complex set, complex set] \<Rightarrow> bool" 
+  ("_ (meromorphic'_on) _ _" [50,50,50]50) where 
+  "f meromorphic_on D pts \<equiv> 
+     open D \<and> pts \<subseteq> D \<and> (\<forall>z\<in>pts. isolated_singularity_at f z \<and> not_essential f z) \<and>
+     (\<forall>z\<in>D. \<not>(z islimpt pts)) \<and> (f holomorphic_on D-pts)"
+
+lemma meromorphic_imp_holomorphic: "f meromorphic_on D pts \<Longrightarrow> f holomorphic_on (D - pts)"
+  unfolding meromorphic_on_def by auto
+
+lemma meromorphic_imp_closedin_pts:
+  assumes "f meromorphic_on D pts"
+  shows "closedin (top_of_set D) pts"
+  by (meson assms closedin_limpt meromorphic_on_def)
+
+lemma meromorphic_imp_open_diff':
+  assumes "f meromorphic_on D pts" "pts' \<subseteq> pts"
+  shows "open (D - pts')"
+proof -
+  have "D - pts' = D - closure pts'"
+  proof safe
+    fix x assume x: "x \<in> D" "x \<in> closure pts'" "x \<notin> pts'"
+    hence "x islimpt pts'"
+      by (subst islimpt_in_closure) auto
+    hence "x islimpt pts"
+      by (rule islimpt_subset) fact
+    with assms x show False
+      by (auto simp: meromorphic_on_def)
+  qed (use closure_subset in auto)
+  then show ?thesis
+    using assms meromorphic_on_def by auto
+qed
+
+lemma meromorphic_imp_open_diff: "f meromorphic_on D pts \<Longrightarrow> open (D - pts)"
+  by (erule meromorphic_imp_open_diff') auto
+
+lemma meromorphic_pole_subset:
+  assumes merf: "f meromorphic_on D pts" 
+  shows "{x\<in>D. is_pole f x} \<subseteq> pts"
+  by (smt (verit) Diff_iff assms mem_Collect_eq meromorphic_imp_open_diff 
+      meromorphic_on_def not_is_pole_holomorphic subsetI)
+
+named_theorems meromorphic_intros
+
+lemma meromorphic_on_subset:
+  assumes "f meromorphic_on A pts" "open B" "B \<subseteq> A" "pts' = pts \<inter> B"
+  shows   "f meromorphic_on B pts'"
+  unfolding meromorphic_on_def
+proof (intro ballI conjI)
+  fix z assume "z \<in> B"
+  show "\<not>z islimpt pts'"
+  proof
+    assume "z islimpt pts'"
+    hence "z islimpt pts"
+      by (rule islimpt_subset) (use \<open>pts' = _\<close> in auto)
+    thus False using \<open>z \<in> B\<close> \<open>B \<subseteq> A\<close> assms(1)
+      by (auto simp: meromorphic_on_def)
+  qed
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_superset_pts:
+  assumes "f meromorphic_on A pts" "pts \<subseteq> pts'" "pts' \<subseteq> A" "\<forall>x\<in>A. \<not>x islimpt pts'"
+  shows   "f meromorphic_on A pts'"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI impI)
+  fix z assume "z \<in> pts'"
+  from assms(1) have holo: "f holomorphic_on A - pts" and "open A"
+    unfolding meromorphic_on_def by blast+
+  have "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+
+  show "isolated_singularity_at f z"
+  proof (cases "z \<in> pts")
+    case False
+    thus ?thesis
+      using \<open>open (A - pts)\<close> assms \<open>z \<in> pts'\<close>
+      by (intro isolated_singularity_at_holomorphic[of _ "A - pts"] holomorphic_on_subset[OF holo])
+         auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+  show "not_essential f z"
+  proof (cases "z \<in> pts")
+    case False
+    thus ?thesis
+      using \<open>open (A - pts)\<close> assms \<open>z \<in> pts'\<close>
+      by (intro not_essential_holomorphic[of _ "A - pts"] holomorphic_on_subset[OF holo])
+         auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_no_singularities: "f meromorphic_on A {} \<longleftrightarrow> f holomorphic_on A \<and> open A"
+  by (auto simp: meromorphic_on_def)
+
+lemma holomorphic_on_imp_meromorphic_on:
+  "f holomorphic_on A \<Longrightarrow> pts \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> \<forall>x\<in>A. \<not>x islimpt pts \<Longrightarrow> f meromorphic_on A pts"
+  by (rule meromorphic_on_superset_pts[where pts = "{}"])
+     (auto simp: meromorphic_on_no_singularities)
+
+lemma meromorphic_on_const [meromorphic_intros]: 
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "(\<lambda>_. c) meromorphic_on A pts"
+  by (rule holomorphic_on_imp_meromorphic_on) (use assms in auto)
+
+lemma meromorphic_on_ident [meromorphic_intros]:
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "(\<lambda>x. x) meromorphic_on A pts"
+  by (rule holomorphic_on_imp_meromorphic_on) (use assms in auto)
+
+lemma meromorphic_on_id [meromorphic_intros]:
+  assumes "open A" "\<forall>x\<in>A. \<not>x islimpt pts" "pts \<subseteq> A"
+  shows   "id meromorphic_on A pts"
+  using meromorphic_on_ident assms unfolding id_def .
+
+lemma not_essential_add [singularity_intros]:
+  assumes f_ness: "not_essential f z" and g_ness: "not_essential g z"
+  assumes f_iso: "isolated_singularity_at f z" and g_iso: "isolated_singularity_at g z"
+  shows "not_essential (\<lambda>w. f w + g w) z"
+proof -
+  have "(\<lambda>w. f (z + w) + g (z + w)) has_laurent_expansion laurent_expansion f z + laurent_expansion g z"
+    by (intro not_essential_has_laurent_expansion laurent_expansion_intros assms)
+  hence "not_essential (\<lambda>w. f (z + w) + g (z + w)) 0"
+    using has_laurent_expansion_not_essential_0 by blast
+  thus ?thesis
+    by (simp add: not_essential_shift_0)
+qed
+
+lemma meromorphic_on_uminus [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>z. -f z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_add [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z + g z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_add':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z + g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+lemma meromorphic_on_add_const [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" 
+  shows   "(\<lambda>z. f z + c) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_minus_const [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" 
+  shows   "(\<lambda>z. f z - c) meromorphic_on A pts"
+  using meromorphic_on_add_const[OF assms,of "-c"] by simp
+
+lemma meromorphic_on_diff [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z - g z) meromorphic_on A pts"
+  using meromorphic_on_add[OF assms(1) meromorphic_on_uminus[OF assms(2)]] by simp
+
+lemma meromorphic_on_diff':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z - g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+lemma meromorphic_on_mult [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z * g z) meromorphic_on A pts"
+  unfolding meromorphic_on_def
+  by (use assms in \<open>auto simp: meromorphic_on_def intro!: holomorphic_intros singularity_intros\<close>)
+
+lemma meromorphic_on_mult':
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts2"
+  shows   "(\<lambda>z. f z * g z) meromorphic_on A (pts1 \<union> pts2)"
+proof (rule meromorphic_intros)
+  show "f meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(1)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+  show "g meromorphic_on A (pts1 \<union> pts2)"
+    by (rule meromorphic_on_superset_pts[OF assms(2)])
+       (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un\<close>)
+qed
+
+
+
+lemma meromorphic_on_imp_not_essential:
+  assumes "f meromorphic_on A pts" "z \<in> A"
+  shows   "not_essential f z"
+proof (cases "z \<in> pts")
+  case False
+  thus ?thesis
+    using not_essential_holomorphic[of f "A - pts" z] meromorphic_imp_open_diff[OF assms(1)] assms
+    by (auto simp: meromorphic_on_def)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_imp_analytic: "f meromorphic_on D pts \<Longrightarrow> f analytic_on (D - pts)"
+  unfolding meromorphic_on_def 
+  apply (subst analytic_on_open)
+  using meromorphic_imp_open_diff meromorphic_on_id apply blast
+  apply auto
+  done
+
+lemma not_islimpt_isolated_zeros:
+  assumes mero: "f meromorphic_on A pts" and "z \<in> A"
+  shows "\<not>z islimpt {w\<in>A. isolated_zero f w}"
+proof
+  assume islimpt: "z islimpt {w\<in>A. isolated_zero f w}"
+  have holo: "f holomorphic_on A - pts" and "open A"
+    using assms by (auto simp: meromorphic_on_def)
+  have open': "open (A - (pts - {z}))"
+    by (intro meromorphic_imp_open_diff'[OF mero]) auto
+  then obtain r where r: "r > 0" "ball z r \<subseteq> A - (pts - {z})"
+    using meromorphic_imp_open_diff[OF mero] \<open>z \<in> A\<close> openE by blast
+
+  have "not_essential f z"
+    using assms by (rule meromorphic_on_imp_not_essential)
+  then consider c where "f \<midarrow>z\<rightarrow> c" | "is_pole f z"
+    unfolding not_essential_def by blast
+  thus False
+  proof cases
+    assume "is_pole f z"
+    hence "eventually (\<lambda>w. f w \<noteq> 0) (at z)"
+      by (rule non_zero_neighbour_pole)
+    hence "\<not>z islimpt {w. f w = 0}"
+      by (simp add: islimpt_conv_frequently_at frequently_def)
+    moreover have "z islimpt {w. f w = 0}"
+      using islimpt by (rule islimpt_subset) (auto simp: isolated_zero_def)
+    ultimately show False by contradiction
+  next
+    fix c assume c: "f \<midarrow>z\<rightarrow> c"
+    define g where "g = (\<lambda>w. if w = z then c else f w)"
+    have holo': "g holomorphic_on A - (pts - {z})" unfolding g_def
+      by (intro removable_singularity holomorphic_on_subset[OF holo] open' c) auto
+
+    have eq_zero: "g w = 0" if "w \<in> ball z r" for w
+    proof (rule analytic_continuation[where f = g])
+      show "open (ball z r)" "connected (ball z r)" "{w\<in>ball z r. isolated_zero f w} \<subseteq> ball z r"
+        by auto
+      have "z islimpt {w\<in>A. isolated_zero f w} \<inter> ball z r"
+        using islimpt \<open>r > 0\<close> by (intro islimpt_Int_eventually eventually_at_in_open') auto
+      also have "\<dots> = {w\<in>ball z r. isolated_zero f w}"
+        using r by auto
+      finally show "z islimpt {w\<in>ball z r. isolated_zero f w}"
+        by simp
+    next
+      fix w assume w: "w \<in> {w\<in>ball z r. isolated_zero f w}"
+      show "g w = 0"
+      proof (cases "w = z")
+        case False
+        thus ?thesis using w by (auto simp: g_def isolated_zero_def)
+      next
+        case True
+        have "z islimpt {z. f z = 0}"
+          using islimpt by (rule islimpt_subset) (auto simp: isolated_zero_def)
+        thus ?thesis
+          using w by (simp add: isolated_zero_altdef True)
+      qed
+    qed (use r that in \<open>auto intro!: holomorphic_on_subset[OF holo'] simp: isolated_zero_def\<close>)
+
+    have "infinite ({w\<in>A. isolated_zero f w} \<inter> ball z r)"
+      using islimpt \<open>r > 0\<close> unfolding islimpt_eq_infinite_ball by blast
+    hence "{w\<in>A. isolated_zero f w} \<inter> ball z r \<noteq> {}"
+      by force
+    then obtain z0 where z0: "z0 \<in> A" "isolated_zero f z0" "z0 \<in> ball z r"
+      by blast
+    have "\<forall>\<^sub>F y in at z0. y \<in> ball z r - (if z = z0 then {} else {z}) - {z0}"
+      using r z0 by (intro eventually_at_in_open) auto
+    hence "eventually (\<lambda>w. f w = 0) (at z0)"
+    proof eventually_elim
+      case (elim w)
+      show ?case
+        using eq_zero[of w] elim by (auto simp: g_def split: if_splits)
+    qed
+    hence "eventually (\<lambda>w. f w = 0) (at z0)"
+      by (auto simp: g_def eventually_at_filter elim!: eventually_mono split: if_splits)
+    moreover from z0 have "eventually (\<lambda>w. f w \<noteq> 0) (at z0)"
+      by (simp add: isolated_zero_def)
+    ultimately have "eventually (\<lambda>_. False) (at z0)"
+      by eventually_elim auto
+    thus False
+      by simp
+  qed
+qed
+  
+lemma closedin_isolated_zeros:
+  assumes "f meromorphic_on A pts"
+  shows   "closedin (top_of_set A) {z\<in>A. isolated_zero f z}"
+  unfolding closedin_limpt using not_islimpt_isolated_zeros[OF assms] by auto
+
+lemma meromorphic_on_deriv':
+  assumes "f meromorphic_on A pts" "open A"
+  assumes "\<And>x. x \<in> A - pts \<Longrightarrow> (f has_field_derivative f' x) (at x)"
+  shows   "f' meromorphic_on A pts"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI)
+  have "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+  thus "f' holomorphic_on A - pts"
+    by (rule derivative_is_holomorphic) (use assms in auto)
+next
+  fix z assume "z \<in> pts"
+  hence "z \<in> A"
+    using assms(1) by (auto simp: meromorphic_on_def)
+  from \<open>z \<in> pts\<close> obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    using assms(1) by (auto simp: meromorphic_on_def isolated_singularity_at_def)
+
+  have "open (ball z r \<inter> (A - (pts - {z})))"
+    by (intro open_Int assms meromorphic_imp_open_diff'[OF assms(1)]) auto
+  then obtain r' where r': "r' > 0" "ball z r' \<subseteq> ball z r \<inter> (A - (pts - {z}))"
+    using r \<open>z \<in> A\<close> by (subst (asm) open_contains_ball) fastforce
+
+  have "open (ball z r' - {z})"
+    by auto
+  hence "f' holomorphic_on ball z r' - {z}"
+    by (rule derivative_is_holomorphic[of _ f]) (use r' in \<open>auto intro!: assms(3)\<close>)
+  moreover have "open (ball z r' - {z})"
+    by auto
+  ultimately show "isolated_singularity_at f' z"
+    unfolding isolated_singularity_at_def using \<open>r' > 0\<close>
+    by (auto simp: analytic_on_open intro!: exI[of _ r'])
+next
+  fix z assume z: "z \<in> pts"
+  hence z': "not_essential f z" "z \<in> A"
+    using assms by (auto simp: meromorphic_on_def)
+  from z'(1) show "not_essential f' z"
+  proof (rule not_essential_deriv')
+    show "z \<in> A - (pts - {z})"
+      using \<open>z \<in> A\<close> by blast
+    show "open (A - (pts - {z}))"
+      by (intro meromorphic_imp_open_diff'[OF assms(1)]) auto
+  qed (use assms in auto)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_on_deriv [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "open A"
+  shows   "deriv f meromorphic_on A pts"
+proof (intro meromorphic_on_deriv'[OF assms(1)])
+  have *: "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF assms(1)])
+  show "(f has_field_derivative deriv f x) (at x)" if "x \<in> A - pts" for x
+    using assms(1) by (intro holomorphic_derivI[OF _ * that]) (auto simp: meromorphic_on_def)
+qed fact
+
+lemma meromorphic_on_imp_analytic_at:
+  assumes "f meromorphic_on A pts" "z \<in> A - pts"
+  shows   "f analytic_on {z}"
+  using assms by (metis analytic_at meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_compact_finite_pts:
+  assumes "f meromorphic_on D pts" "compact S" "S \<subseteq> D"
+  shows "finite (S \<inter> pts)"
+proof -
+  { assume "infinite (S \<inter> pts)"
+    then obtain z where "z \<in> S" and z: "z islimpt (S \<inter> pts)"
+      using assms by (metis compact_eq_Bolzano_Weierstrass inf_le1) 
+    then have False
+        using assms by (meson in_mono inf_le2 islimpt_subset meromorphic_on_def) }
+  then show ?thesis by metis
+qed
+
+lemma meromorphic_imp_countable:
+  assumes "f meromorphic_on D pts" 
+  shows "countable pts"
+proof -
+  obtain K :: "nat \<Rightarrow> complex set" where K: "D = (\<Union>n. K n)" "\<And>n. compact (K n)"
+    using assms unfolding meromorphic_on_def by (metis open_Union_compact_subsets)
+  then have "pts = (\<Union>n. K n \<inter> pts)"
+    using assms meromorphic_on_def by auto
+  moreover have "\<And>n. finite (K n \<inter> pts)"
+    by (metis K(1) K(2) UN_I assms image_iff meromorphic_compact_finite_pts rangeI subset_eq)
+  ultimately show ?thesis
+    by (metis countableI_type countable_UN countable_finite)
+qed
+
+lemma meromorphic_imp_connected_diff':
+  assumes "f meromorphic_on D pts" "connected D" "pts' \<subseteq> pts"
+  shows "connected (D - pts')"
+proof (rule connected_open_diff_countable)
+  show "countable pts'"
+    by (rule countable_subset [OF assms(3)]) (use assms(1) in \<open>auto simp: meromorphic_imp_countable\<close>)
+qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma meromorphic_imp_connected_diff:
+  assumes "f meromorphic_on D pts" "connected D"
+  shows "connected (D - pts)"
+  using meromorphic_imp_connected_diff'[OF assms order.refl] .
+
+lemma meromorphic_on_compose [meromorphic_intros]:
+  assumes f: "f meromorphic_on A pts" and g: "g holomorphic_on B"
+  assumes "open B" and "g ` B \<subseteq> A"
+  shows   "(\<lambda>x. f (g x)) meromorphic_on B (isolated_points_of (g -` pts \<inter> B))"
+  unfolding meromorphic_on_def
+proof (intro ballI conjI)
+  fix z assume z: "z \<in> isolated_points_of (g -` pts \<inter> B)"
+  hence z': "z \<in> B" "g z \<in> pts"
+    using isolated_points_of_subset by blast+
+  have g': "g analytic_on {z}"
+    using g z' \<open>open B\<close> analytic_at by blast
+
+  show "isolated_singularity_at (\<lambda>x. f (g x)) z"
+    by (rule isolated_singularity_at_compose[OF _ g']) (use f z' in \<open>auto simp: meromorphic_on_def\<close>)
+  show "not_essential (\<lambda>x. f (g x)) z"
+    by (rule not_essential_compose[OF _ g']) (use f z' in \<open>auto simp: meromorphic_on_def\<close>)
+next
+  fix z assume z: "z \<in> B"
+  hence "g z \<in> A"
+    using assms by auto
+  hence "\<not>g z islimpt pts"
+    using f by (auto simp: meromorphic_on_def)
+  hence ev: "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  have g': "g analytic_on {z}"
+    by (rule holomorphic_on_imp_analytic_at[OF g]) (use assms z in auto)
+
+  (* TODO: There's probably a useful lemma somewhere in here to extract... *)
+  have "eventually (\<lambda>w. w \<notin> isolated_points_of (g -` pts \<inter> B)) (at z)"
+  proof (cases "isolated_zero (\<lambda>w. g w - g z) z")
+    case True
+    have "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+      using ev by (auto simp: islimpt_conv_frequently_at frequently_def)
+    moreover have "g \<midarrow>z\<rightarrow> g z"
+      using analytic_at_imp_isCont[OF g'] isContD by blast
+    hence lim: "filterlim g (at (g z)) (at z)"
+      using True by (auto simp: filterlim_at isolated_zero_def)
+    have "eventually (\<lambda>w. g w \<notin> pts) (at z)"
+      using ev lim by (rule eventually_compose_filterlim)
+    thus ?thesis
+      by eventually_elim (auto simp: isolated_points_of_def)
+  next
+    case False
+    have "eventually (\<lambda>w. g w - g z = 0) (nhds z)"
+      using False by (rule non_isolated_zero) (auto intro!: analytic_intros g')
+    hence "eventually (\<lambda>w. g w = g z \<and> w \<in> B) (nhds z)"
+      using eventually_nhds_in_open[OF \<open>open B\<close> \<open>z \<in> B\<close>]
+      by eventually_elim auto
+    then obtain X where X: "open X" "z \<in> X" "X \<subseteq> B" "\<forall>x\<in>X. g x = g z"
+      unfolding eventually_nhds by blast
+
+    have "z0 \<notin> isolated_points_of (g -` pts \<inter> B)" if "z0 \<in> X" for z0
+    proof (cases "g z \<in> pts")
+      case False
+      with that have "g z0 \<notin> pts"
+        using X by metis
+      thus ?thesis
+        by (auto simp: isolated_points_of_def)
+    next
+      case True
+      have "eventually (\<lambda>w. w \<in> X) (at z0)"
+        by (intro eventually_at_in_open') fact+
+      hence "eventually (\<lambda>w. w \<in> g -` pts \<inter> B) (at z0)"
+        by eventually_elim (use X True in fastforce)
+      hence "frequently (\<lambda>w. w \<in> g -` pts \<inter> B) (at z0)"
+        by (meson at_neq_bot eventually_frequently)
+      thus "z0 \<notin> isolated_points_of (g -` pts \<inter> B)"
+        unfolding isolated_points_of_def by (auto simp: frequently_def)
+    qed
+    moreover have "eventually (\<lambda>x. x \<in> X) (at z)"
+      by (intro eventually_at_in_open') fact+
+    ultimately show ?thesis
+      by (auto elim!: eventually_mono)
+  qed
+  thus "\<not>z islimpt isolated_points_of (g -` pts \<inter> B)"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+next
+  have "f \<circ> g analytic_on (\<Union>z\<in>B - isolated_points_of (g -` pts \<inter> B). {z})"
+    unfolding analytic_on_UN
+  proof
+    fix z assume z: "z \<in> B - isolated_points_of (g -` pts \<inter> B)"
+    hence "z \<in> B" by blast
+    have g': "g analytic_on {z}"
+      by (rule holomorphic_on_imp_analytic_at[OF g]) (use assms z in auto)
+    show "f \<circ> g analytic_on {z}"
+    proof (cases "g z \<in> pts")
+      case False
+      show ?thesis
+      proof (rule analytic_on_compose)
+        show "f analytic_on g ` {z}" using False z assms
+          by (auto intro!: meromorphic_on_imp_analytic_at[OF f])
+      qed fact
+    next
+      case True
+      show ?thesis
+      proof (cases "isolated_zero (\<lambda>w. g w - g z) z")
+        case False
+        hence "eventually (\<lambda>w. g w - g z = 0) (nhds z)"
+          by (rule non_isolated_zero) (auto intro!: analytic_intros g')
+        hence "f \<circ> g analytic_on {z} \<longleftrightarrow> (\<lambda>_. f (g z)) analytic_on {z}"
+          by (intro analytic_at_cong) (auto elim!: eventually_mono)
+        thus ?thesis
+          by simp
+      next
+        case True
+        hence ev: "eventually (\<lambda>w. g w \<noteq> g z) (at z)"
+          by (auto simp: isolated_zero_def)
+  
+        have "\<not>g z islimpt pts"
+          using \<open>g z \<in> pts\<close> f by (auto simp: meromorphic_on_def)
+        hence "eventually (\<lambda>w. w \<notin> pts) (at (g z))"
+          by (auto simp: islimpt_conv_frequently_at frequently_def)
+        moreover have "g \<midarrow>z\<rightarrow> g z"
+          using analytic_at_imp_isCont[OF g'] isContD by blast
+        with ev have "filterlim g (at (g z)) (at z)"
+          by (auto simp: filterlim_at)
+        ultimately have "eventually (\<lambda>w. g w \<notin> pts) (at z)"
+          using eventually_compose_filterlim by blast
+        hence "z \<in> isolated_points_of (g -` pts \<inter> B)"
+          using \<open>g z \<in> pts\<close> \<open>z \<in> B\<close>
+          by (auto simp: isolated_points_of_def elim!: eventually_mono)
+        with z show ?thesis by simp
+      qed
+    qed
+  qed
+  also have "\<dots> = B - isolated_points_of (g -` pts \<inter> B)"
+    by blast
+  finally show "(\<lambda>x. f (g x)) holomorphic_on B - isolated_points_of (g -` pts \<inter> B)"
+    unfolding o_def using analytic_imp_holomorphic by blast
+qed (auto simp: isolated_points_of_def \<open>open B\<close>)
+
+lemma meromorphic_on_compose':
+  assumes f: "f meromorphic_on A pts" and g: "g holomorphic_on B"
+  assumes "open B" and "g ` B \<subseteq> A" and "pts' = (isolated_points_of (g -` pts \<inter> B))"
+  shows   "(\<lambda>x. f (g x)) meromorphic_on B pts'"
+  using meromorphic_on_compose[OF assms(1-4)] assms(5) by simp
+
+lemma meromorphic_on_inverse': "inverse meromorphic_on UNIV 0"
+  unfolding meromorphic_on_def
+  by (auto intro!: holomorphic_intros singularity_intros not_essential_inverse 
+                   isolated_singularity_at_inverse simp: islimpt_finite)
+
+lemma meromorphic_on_inverse [meromorphic_intros]:
+  assumes mero: "f meromorphic_on A pts"
+  shows   "(\<lambda>z. inverse (f z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero f z})"
+proof -
+  have "open A"
+    using mero by (auto simp: meromorphic_on_def)
+  have open': "open (A - pts)"
+    by (intro meromorphic_imp_open_diff[OF mero])
+  have holo: "f holomorphic_on A - pts"
+    using assms by (auto simp: meromorphic_on_def)
+  have ana: "f analytic_on A - pts"
+    using open' holo by (simp add: analytic_on_open)
+
+  show ?thesis
+    unfolding meromorphic_on_def
+  proof (intro conjI ballI)
+    fix z assume z: "z \<in> pts \<union> {z\<in>A. isolated_zero f z}"
+    have "isolated_singularity_at f z \<and> not_essential f z"
+    proof (cases "z \<in> pts")
+      case False
+      have "f holomorphic_on A - pts - {z}"
+        by (intro holomorphic_on_subset[OF holo]) auto
+      hence "isolated_singularity_at f z"
+        by (rule isolated_singularity_at_holomorphic)
+           (use z False in \<open>auto intro!: meromorphic_imp_open_diff[OF mero]\<close>)
+      moreover have "not_essential f z"
+        using z False
+        by (intro not_essential_holomorphic[OF holo] meromorphic_imp_open_diff[OF mero]) auto
+      ultimately show ?thesis by blast
+    qed (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+    thus "isolated_singularity_at (\<lambda>z. inverse (f z)) z" "not_essential (\<lambda>z. inverse (f z)) z"
+      by (auto intro!: isolated_singularity_at_inverse not_essential_inverse)
+  next
+    fix z assume "z \<in> A"
+    hence "\<not> z islimpt {z\<in>A. isolated_zero f z}"
+      by (rule not_islimpt_isolated_zeros[OF mero])
+    thus "\<not> z islimpt pts \<union> {z \<in> A. isolated_zero f z}" using \<open>z \<in> A\<close>
+      using mero by (auto simp: islimpt_Un meromorphic_on_def)
+  next
+    show "pts \<union> {z \<in> A. isolated_zero f z} \<subseteq> A"
+      using mero by (auto simp: meromorphic_on_def)
+  next
+    have "(\<lambda>z. inverse (f z)) analytic_on (\<Union>w\<in>A - (pts \<union> {z \<in> A. isolated_zero f z}) . {w})"
+      unfolding analytic_on_UN
+    proof (intro ballI)
+      fix w assume w: "w \<in> A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      show "(\<lambda>z. inverse (f z)) analytic_on {w}"
+      proof (cases "f w = 0")
+        case False
+        thus ?thesis using w
+          by (intro analytic_intros analytic_on_subset[OF ana]) auto
+      next
+        case True
+        have "eventually (\<lambda>w. f w = 0) (nhds w)"
+          using True w by (intro non_isolated_zero analytic_on_subset[OF ana]) auto
+        hence "(\<lambda>z. inverse (f z)) analytic_on {w} \<longleftrightarrow> (\<lambda>_. 0) analytic_on {w}"
+          using w by (intro analytic_at_cong refl) auto
+        thus ?thesis
+          by simp
+      qed
+    qed
+    also have "\<dots> = A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      by blast
+    finally have "(\<lambda>z. inverse (f z)) analytic_on \<dots>" .
+    moreover have "open (A - (pts \<union> {z \<in> A. isolated_zero f z}))"
+      using closedin_isolated_zeros[OF mero] open' \<open>open A\<close>
+      by (metis (no_types, lifting) Diff_Diff_Int Diff_Un closedin_closed open_Diff open_Int)
+    ultimately show "(\<lambda>z. inverse (f z)) holomorphic_on A - (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (subst (asm) analytic_on_open) auto
+  qed (use assms in \<open>auto simp: meromorphic_on_def islimpt_Un 
+                          intro!: holomorphic_intros singularity_intros\<close>)
+qed
+
+lemma meromorphic_on_inverse'' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "{z\<in>A. f z = 0} \<subseteq> pts"
+  shows   "(\<lambda>z. inverse (f z)) meromorphic_on A pts"
+proof -
+  have "(\<lambda>z. inverse (f z)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_on_inverse assms)
+  also have "(pts \<union> {z \<in> A. isolated_zero f z}) = pts"
+    using assms(2) by (auto simp: isolated_zero_def)
+  finally show ?thesis .
+qed
+
+lemma meromorphic_on_divide [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" and "g meromorphic_on A pts"
+  shows   "(\<lambda>z. f z / g z) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+proof -
+  have mero1: "(\<lambda>z. inverse (g z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (intro meromorphic_intros assms)
+  have sparse: "\<forall>x\<in>A. \<not> x islimpt pts \<union> {z\<in>A. isolated_zero g z}" and "pts \<subseteq> A"
+    using mero1 by (auto simp: meromorphic_on_def)
+  have mero2: "f meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (rule meromorphic_on_superset_pts[OF assms(1)]) (use sparse \<open>pts \<subseteq> A\<close> in auto)
+  have "(\<lambda>z. f z * inverse (g z)) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero g z})"
+    by (intro meromorphic_on_mult mero1 mero2)
+  thus ?thesis
+    by (simp add: field_simps)
+qed
+
+lemma meromorphic_on_divide' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "g meromorphic_on A pts" "{z\<in>A. g z = 0} \<subseteq> pts"
+  shows   "(\<lambda>z. f z / g z) meromorphic_on A pts"
+proof -
+  have "(\<lambda>z. f z * inverse (g z)) meromorphic_on A pts"
+    by (intro meromorphic_intros assms)
+  thus ?thesis
+    by (simp add: field_simps)
+qed
+
+lemma meromorphic_on_cmult_left [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. c * f x) meromorphic_on A pts"
+  using assms by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_cmult_right [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. f x * c) meromorphic_on A pts"
+  using assms by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_scaleR [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. c *\<^sub>R f x) meromorphic_on A pts"
+  using assms unfolding scaleR_conv_of_real
+  by (intro meromorphic_intros) (auto simp: meromorphic_on_def)
+
+lemma meromorphic_on_sum [meromorphic_intros]:
+  assumes "\<And>y. y \<in> I \<Longrightarrow> f y meromorphic_on A pts"
+  assumes "I \<noteq> {} \<or> open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+  shows   "(\<lambda>x. \<Sum>y\<in>I. f y x) meromorphic_on A pts"
+proof -
+  have *: "open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+    using assms(2)
+  proof
+    assume "I \<noteq> {}"
+    then obtain x where "x \<in> I"
+      by blast
+    from assms(1)[OF this] show ?thesis
+      by (auto simp: meromorphic_on_def)
+  qed auto
+  show ?thesis
+    using assms(1)
+    by (induction I rule: infinite_finite_induct) (use * in \<open>auto intro!: meromorphic_intros\<close>)
+qed
+
+lemma meromorphic_on_prod [meromorphic_intros]:
+  assumes "\<And>y. y \<in> I \<Longrightarrow> f y meromorphic_on A pts"
+  assumes "I \<noteq> {} \<or> open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+  shows   "(\<lambda>x. \<Prod>y\<in>I. f y x) meromorphic_on A pts"
+proof -
+  have *: "open A \<and> pts \<subseteq> A \<and> (\<forall>x\<in>A. \<not>x islimpt pts)"
+    using assms(2)
+  proof
+    assume "I \<noteq> {}"
+    then obtain x where "x \<in> I"
+      by blast
+    from assms(1)[OF this] show ?thesis
+      by (auto simp: meromorphic_on_def)
+  qed auto
+  show ?thesis
+    using assms(1)
+    by (induction I rule: infinite_finite_induct) (use * in \<open>auto intro!: meromorphic_intros\<close>)
+qed
+
+lemma meromorphic_on_power [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>x. f x ^ n) meromorphic_on A pts"
+proof -
+  have "(\<lambda>x. \<Prod>i\<in>{..<n}. f x) meromorphic_on A pts"
+    by (intro meromorphic_intros assms(1)) (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+  thus ?thesis
+    by simp
+qed
+
+lemma meromorphic_on_power_int [meromorphic_intros]:
+  assumes "f meromorphic_on A pts"
+  shows   "(\<lambda>z. f z powi n) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+proof -
+  have inv: "(\<lambda>x. inverse (f x)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_intros assms)
+  have *: "f meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+    by (intro meromorphic_on_superset_pts [OF assms(1)])
+       (use inv in \<open>auto simp: meromorphic_on_def\<close>)
+  show ?thesis
+  proof (cases "n \<ge> 0")
+    case True   
+    have "(\<lambda>x. f x ^ nat n) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (intro meromorphic_intros *)
+    thus ?thesis
+      using True by (simp add: power_int_def)
+  next
+    case False
+    have "(\<lambda>x. inverse (f x) ^ nat (-n)) meromorphic_on A (pts \<union> {z \<in> A. isolated_zero f z})"
+      by (intro meromorphic_intros assms)
+    thus ?thesis
+      using False by (simp add: power_int_def)
+  qed
+qed
+
+lemma meromorphic_on_power_int' [meromorphic_intros]:
+  assumes "f meromorphic_on A pts" "n \<ge> 0 \<or> (\<forall>z\<in>A. isolated_zero f z \<longrightarrow> z \<in> pts)"
+  shows   "(\<lambda>z. f z powi n) meromorphic_on A pts"
+proof (cases "n \<ge> 0")
+  case True
+  have "(\<lambda>z. f z ^ nat n) meromorphic_on A pts"
+    by (intro meromorphic_intros assms)
+  thus ?thesis
+    using True by (simp add: power_int_def)
+next
+  case False
+  have "(\<lambda>z. f z powi n) meromorphic_on A (pts \<union> {z\<in>A. isolated_zero f z})"
+    by (rule meromorphic_on_power_int) fact
+  also from assms(2) False have "pts \<union> {z\<in>A. isolated_zero f z} = pts"
+    by auto
+  finally show ?thesis .
+qed
+
+lemma has_laurent_expansion_on_imp_meromorphic_on:
+  assumes "open A" 
+  assumes laurent: "\<And>z. z \<in> A \<Longrightarrow> \<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F"
+  shows   "f meromorphic_on A {z\<in>A. \<not>f analytic_on {z}}"
+  unfolding meromorphic_on_def
+proof (intro conjI ballI)
+  fix z assume "z \<in> {z\<in>A. \<not>f analytic_on {z}}"
+  then obtain F where F: "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+    using laurent[of z] by blast
+  from F show "not_essential f z" "isolated_singularity_at f z"
+    using has_laurent_expansion_not_essential has_laurent_expansion_isolated by blast+
+next
+  fix z assume z: "z \<in> A"
+  obtain F where F: "(\<lambda>w. f (z + w)) has_laurent_expansion F"
+    using laurent[of z] \<open>z \<in> A\<close> by blast
+  from F have "isolated_singularity_at f z"
+    using has_laurent_expansion_isolated z by blast
+  then obtain r where r: "r > 0" "f analytic_on ball z r - {z}"
+    unfolding isolated_singularity_at_def by blast
+  have "f analytic_on {w}" if "w \<in> ball z r - {z}" for w
+    by (rule analytic_on_subset[OF r(2)]) (use that in auto)
+  hence "eventually (\<lambda>w. f analytic_on {w}) (at z)"
+    using eventually_at_in_open[of "ball z r" z] \<open>r > 0\<close> by (auto elim!: eventually_mono)
+  hence "\<not>z islimpt {w. \<not>f analytic_on {w}}"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  thus "\<not>z islimpt {w\<in>A. \<not>f analytic_on {w}}"
+    using islimpt_subset[of z "{w\<in>A. \<not>f analytic_on {w}}" "{w. \<not>f analytic_on {w}}"] by blast
+next
+  have "f analytic_on A - {w\<in>A. \<not>f analytic_on {w}}"
+    by (subst analytic_on_analytic_at) auto
+  thus "f holomorphic_on A - {w\<in>A. \<not>f analytic_on {w}}"
+    by (meson analytic_imp_holomorphic)
+qed (use assms in auto)
+
+lemma meromorphic_on_imp_has_laurent_expansion:
+  assumes "f meromorphic_on A pts" "z \<in> A"
+  shows   "(\<lambda>w. f (z + w)) has_laurent_expansion laurent_expansion f z"
+proof (cases "z \<in> pts")
+  case True
+  thus ?thesis
+    using assms by (intro not_essential_has_laurent_expansion) (auto simp: meromorphic_on_def)
+next
+  case False
+  have "f holomorphic_on (A - pts)"
+    using assms by (auto simp: meromorphic_on_def)
+  moreover have "z \<in> A - pts" "open (A - pts)"
+    using assms(2) False by (auto intro!: meromorphic_imp_open_diff[OF assms(1)])
+  ultimately have "f analytic_on {z}"
+    unfolding analytic_at by blast
+  thus ?thesis
+    using isolated_singularity_at_analytic not_essential_analytic
+          not_essential_has_laurent_expansion by blast
+qed    
+
+lemma
+  assumes "isolated_singularity_at f z" "f \<midarrow>z\<rightarrow> c"
+  shows   eventually_remove_sings_eq_nhds':
+            "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (nhds z)"
+    and   remove_sings_analytic_at_singularity: "remove_sings f analytic_on {z}"
+proof -
+  have "eventually (\<lambda>w. w \<noteq> z) (at z)"
+    by (auto simp: eventually_at_filter)
+  hence "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (at z)"
+    using eventually_remove_sings_eq_at[OF assms(1)]
+    by eventually_elim auto
+  moreover have "remove_sings f z = c"
+    using assms by auto
+  ultimately show ev: "eventually (\<lambda>w. remove_sings f w = (if w = z then c else f w)) (nhds z)"
+    by (simp add: eventually_at_filter)
+
+  have "(\<lambda>w. if w = z then c else f w) analytic_on {z}"
+    by (intro removable_singularity' assms)
+  also have "?this \<longleftrightarrow> remove_sings f analytic_on {z}"
+    using ev by (intro analytic_at_cong) (auto simp: eq_commute)
+  finally show \<dots> .
+qed
+
+lemma remove_sings_meromorphic_on:
+  assumes "f meromorphic_on A pts" "\<And>z. z \<in> pts - pts' \<Longrightarrow> \<not>is_pole f z" "pts' \<subseteq> pts"
+  shows   "remove_sings f meromorphic_on A pts'"
+  unfolding meromorphic_on_def
+proof safe
+  have "remove_sings f analytic_on {z}" if "z \<in> A - pts'" for z
+  proof (cases "z \<in> pts")
+    case False
+    hence *: "f analytic_on {z}"
+      using assms meromorphic_imp_open_diff[OF assms(1)] that
+      by (force simp: meromorphic_on_def analytic_at) 
+    have "remove_sings f analytic_on {z} \<longleftrightarrow> f analytic_on {z}"
+      by (intro analytic_at_cong eventually_remove_sings_eq_nhds * refl)
+    thus ?thesis using * by simp
+  next
+    case True
+    have isol: "isolated_singularity_at f z"
+      using True using assms by (auto simp: meromorphic_on_def)
+    from assms(1) have "not_essential f z"
+      using True by (auto simp: meromorphic_on_def)
+    with assms(2) True that obtain c where "f \<midarrow>z\<rightarrow> c"
+      by (auto simp: not_essential_def)
+    thus "remove_sings f analytic_on {z}"
+      by (intro remove_sings_analytic_at_singularity isol)
+  qed
+  hence "remove_sings f analytic_on A - pts'"
+    by (subst analytic_on_analytic_at) auto
+  thus "remove_sings f holomorphic_on A - pts'"
+    using meromorphic_imp_open_diff'[OF assms(1,3)] by (subst (asm) analytic_on_open)
+qed (use assms islimpt_subset[OF _ assms(3)] in \<open>auto simp: meromorphic_on_def\<close>)
+
+lemma remove_sings_holomorphic_on:
+  assumes "f meromorphic_on A pts" "\<And>z. z \<in> pts \<Longrightarrow> \<not>is_pole f z"
+  shows   "remove_sings f holomorphic_on A"
+  using remove_sings_meromorphic_on[OF assms(1), of "{}"] assms(2)
+  by (auto simp: meromorphic_on_no_singularities)
+
+lemma meromorphic_on_Ex_iff:
+  "(\<exists>pts. f meromorphic_on A pts) \<longleftrightarrow>
+     open A \<and> (\<forall>z\<in>A. \<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F)"
+proof safe
+  fix pts assume *: "f meromorphic_on A pts"
+  from * show "open A"
+    by (auto simp: meromorphic_on_def)
+  show "\<exists>F. (\<lambda>w. f (z + w)) has_laurent_expansion F" if "z \<in> A" for z
+    using that *
+    by (intro exI[of _ "laurent_expansion f z"] meromorphic_on_imp_has_laurent_expansion)
+qed (blast intro!: has_laurent_expansion_on_imp_meromorphic_on)
+
+lemma is_pole_inverse_holomorphic_pts:
+  fixes pts::"complex set" and f::"complex \<Rightarrow> complex"
+  defines "g \<equiv> \<lambda>x. (if x\<in>pts then 0 else inverse (f x))"
+  assumes mer: "f meromorphic_on D pts"
+    and non_z: "\<And>z. z \<in> D - pts \<Longrightarrow> f z \<noteq> 0"
+    and all_poles:"\<forall>x. is_pole f x \<longleftrightarrow> x\<in>pts"
+  shows "g holomorphic_on D"
+proof -
+  have "open D" and f_holo: "f holomorphic_on (D-pts)" 
+    using mer by (auto simp: meromorphic_on_def)
+  have "\<exists>r. r>0 \<and> f analytic_on ball z r - {z} 
+            \<and> (\<forall>x \<in> ball z r - {z}. f x\<noteq>0)" if "z\<in>pts" for z 
+  proof -
+    have "isolated_singularity_at f z" "is_pole f z"
+      using mer meromorphic_on_def that all_poles by blast+
+    then obtain r1 where "r1>0" and fan: "f analytic_on ball z r1 - {z}"
+      by (meson isolated_singularity_at_def)
+    obtain r2 where "r2>0" "\<forall>x \<in> ball z r2 - {z}. f x\<noteq>0"
+      using non_zero_neighbour_pole[OF \<open>is_pole f z\<close>] 
+      unfolding eventually_at by (metis Diff_iff UNIV_I dist_commute insertI1 mem_ball)
+    define r where "r = min r1 r2"
+    have "r>0" by (simp add: \<open>0 < r2\<close> \<open>r1>0\<close> r_def)
+    moreover have "f analytic_on ball z r - {z}"
+      using r_def by (force intro: analytic_on_subset [OF fan])
+    moreover have "\<forall>x \<in> ball z r - {z}. f x\<noteq>0"
+      by (simp add: \<open>\<forall>x\<in>ball z r2 - {z}. f x \<noteq> 0\<close> r_def)
+    ultimately show ?thesis by auto
+  qed
+  then obtain get_r where r_pos:"get_r z>0" 
+      and r_ana:"f analytic_on ball z (get_r z) - {z}"
+      and r_nz:"\<forall>x \<in> ball z (get_r z) - {z}. f x\<noteq>0"
+    if "z\<in>pts" for z
+    by metis
+  define p_balls where "p_balls \<equiv> \<Union>z\<in>pts. ball z (get_r z)"
+  have g_ball:"g holomorphic_on ball z (get_r z)" if "z\<in>pts" for z
+  proof -
+    have "(\<lambda>x. if x = z then 0 else inverse (f x)) holomorphic_on ball z (get_r z)"
+    proof (rule is_pole_inverse_holomorphic)
+      show "f holomorphic_on ball z (get_r z) - {z}"
+        using analytic_imp_holomorphic r_ana that by blast
+      show "is_pole f z"
+        using mer meromorphic_on_def that all_poles by force
+      show "\<forall>x\<in>ball z (get_r z) - {z}. f x \<noteq> 0"
+        using r_nz that by metis
+    qed auto
+    then show ?thesis unfolding g_def
+      by (smt (verit, ccfv_SIG) Diff_iff Elementary_Metric_Spaces.open_ball
+          all_poles analytic_imp_holomorphic empty_iff 
+          holomorphic_transform insert_iff not_is_pole_holomorphic 
+          open_delete r_ana that)
+  qed
+  then have "g holomorphic_on p_balls" 
+  proof -
+    have "g analytic_on p_balls"
+      unfolding p_balls_def analytic_on_UN
+      using g_ball by (simp add: analytic_on_open)
+    moreover have "open p_balls" using p_balls_def by blast
+    ultimately show ?thesis 
+      by (simp add: analytic_imp_holomorphic)
+  qed
+  moreover have "g holomorphic_on D-pts" 
+  proof -
+    have "(\<lambda>z. inverse (f z)) holomorphic_on D - pts"
+      using f_holo holomorphic_on_inverse non_z by blast
+    then show ?thesis
+      by (metis DiffD2 g_def holomorphic_transform) 
+  qed
+  moreover have "open p_balls" 
+    using p_balls_def by blast
+  ultimately have "g holomorphic_on (p_balls \<union> (D-pts))"
+    by (simp add: holomorphic_on_Un meromorphic_imp_open_diff[OF mer])
+  moreover have "D \<subseteq> p_balls \<union> (D-pts)"
+    unfolding p_balls_def using \<open>\<And>z. z \<in> pts \<Longrightarrow> 0 < get_r z\<close> by force
+  ultimately show "g holomorphic_on D" by (meson holomorphic_on_subset)
+qed
+
+lemma meromorphic_imp_analytic_on:
+  assumes "f meromorphic_on D pts"
+  shows "f analytic_on (D - pts)"
+  by (metis assms analytic_on_open meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_imp_constant_on:
+  assumes merf: "f meromorphic_on D pts" 
+      and "f constant_on (D - pts)"
+      and "\<forall>x\<in>pts. is_pole f x"
+    shows "f constant_on D"
+proof -
+  obtain c where c:"\<And>z. z \<in> D-pts \<Longrightarrow> f z = c"
+    by (meson assms constant_on_def)
+
+  have "f z = c" if "z \<in> D" for z
+  proof (cases "is_pole f z")
+    case True
+    then obtain r0 where "r0 > 0" and r0: "f analytic_on ball z r0 - {z}" and pol: "is_pole f z"
+      using merf unfolding meromorphic_on_def isolated_singularity_at_def 
+      by (metis \<open>z \<in> D\<close> insert_Diff insert_Diff_if insert_iff merf 
+          meromorphic_imp_open_diff not_is_pole_holomorphic)
+    have "open D"
+      using merf meromorphic_on_def by auto
+    then obtain r where "r > 0" "ball z r \<subseteq> D" "r \<le> r0"
+      by (smt (verit, best) \<open>0 < r0\<close> \<open>z \<in> D\<close> openE order_subst2 subset_ball)
+    have r: "f analytic_on ball z r - {z}"
+      by (meson Diff_mono \<open>r \<le> r0\<close> analytic_on_subset order_refl r0 subset_ball)
+    have "ball z r - {z} \<subseteq> -pts"
+      using merf r unfolding meromorphic_on_def
+      by (meson ComplI Elementary_Metric_Spaces.open_ball 
+          analytic_imp_holomorphic assms(3) not_is_pole_holomorphic open_delete subsetI)
+    with \<open>ball z r \<subseteq> D\<close> have "ball z r - {z} \<subseteq> D-pts"
+      by fastforce
+    with c have c': "\<And>u. u \<in> ball z r - {z} \<Longrightarrow> f u = c"
+      by blast    
+    have False if "\<forall>\<^sub>F x in at z. cmod c + 1 \<le> cmod (f x)"
+    proof -
+      have "\<forall>\<^sub>F x in at z within ball z r - {z}. cmod c + 1 \<le> cmod (f x)"
+        by (smt (verit, best) Diff_UNIV Diff_eq_empty_iff eventually_at_topological insert_subset that)
+      with \<open>r > 0\<close> show ?thesis
+        apply (simp add: c' eventually_at_filter topological_space_class.eventually_nhds open_dist)
+        by (metis dist_commute min_less_iff_conj perfect_choose_dist)
+    qed
+    with pol show ?thesis
+      by (auto simp: is_pole_def filterlim_at_infinity_conv_norm_at_top filterlim_at_top)
+  next
+    case False
+    then show ?thesis by (meson DiffI assms(3) c that)
+  qed 
+  then show ?thesis
+    by (simp add: constant_on_def)
+qed
+
+
+lemma meromorphic_isolated:
+  assumes merf: "f meromorphic_on D pts" and "p\<in>pts"
+  obtains r where "r>0" "ball p r \<subseteq> D" "ball p r \<inter> pts = {p}"
+proof -
+  have "\<forall>z\<in>D. \<exists>e>0. finite (pts \<inter> ball z e)" 
+    using merf unfolding meromorphic_on_def islimpt_eq_infinite_ball
+    by auto
+  then obtain r0 where r0:"r0>0" "finite (pts \<inter> ball p r0)"
+    by (metis assms(2) in_mono merf meromorphic_on_def)
+  moreover define pts' where "pts' = pts \<inter> ball p r0 - {p}"
+  ultimately have "finite pts'"
+    by simp
+  
+  define r1 where "r1=(if pts'={} then r0 else 
+                          min (Min {dist p' p |p'. p'\<in>pts'}/2) r0)"
+  have "r1>0 \<and> pts \<inter> ball p r1 - {p} = {}"
+  proof (cases "pts'={}")
+    case True
+    then show ?thesis 
+      using pts'_def r0(1) r1_def by presburger
+  next
+    case False
+    define S where "S={dist p' p |p'. p'\<in>pts'}"
+
+    have nempty:"S \<noteq> {}"
+      using False S_def by blast
+    have finite:"finite S"
+      using \<open>finite pts'\<close> S_def by simp
+
+    have "r1>0"
+    proof -
+      have "r1=min (Min S/2) r0"
+        using False unfolding S_def r1_def by auto
+      moreover have "Min S\<in>S"
+        using \<open>S\<noteq>{}\<close> \<open>finite S\<close>  Min_in by auto
+      then have "Min S>0" unfolding S_def 
+        using pts'_def by force
+      ultimately show ?thesis using \<open>r0>0\<close> by auto
+    qed
+    moreover have "pts \<inter> ball p r1 - {p} = {}"
+    proof (rule ccontr)
+      assume "pts \<inter> ball p r1 - {p} \<noteq> {}"
+      then obtain p' where "p'\<in>pts \<inter> ball p r1 - {p}" by blast
+      moreover have "r1\<le>r0" using r1_def by auto
+      ultimately have "p'\<in>pts'" unfolding pts'_def 
+        by auto
+      then have "dist p' p\<ge>Min S" 
+        using S_def eq_Min_iff local.finite by blast
+      moreover have "dist p' p < Min S"
+        using \<open>p'\<in>pts \<inter> ball p r1 - {p}\<close> False unfolding r1_def
+        apply (fold S_def)
+        by (smt (verit, ccfv_threshold) DiffD1 Int_iff dist_commute 
+            dist_triangle_half_l mem_ball)
+      ultimately show False by auto
+    qed
+    ultimately show ?thesis by auto
+  qed
+  then have "r1>0" and r1_pts:"pts \<inter> ball p r1 - {p} = {}" by auto
+
+  obtain r2 where "r2>0" "ball p r2 \<subseteq> D"
+    by (metis assms(2) merf meromorphic_on_def openE subset_eq)
+  define r where "r=min r1 r2"
+  have "r > 0" unfolding r_def 
+    by (simp add: \<open>0 < r1\<close> \<open>0 < r2\<close>)
+  moreover have "ball p r \<subseteq> D" 
+    using \<open>ball p r2 \<subseteq> D\<close> r_def by auto
+  moreover have "ball p r \<inter> pts = {p}"
+    using assms(2) \<open>r>0\<close> r1_pts
+    unfolding r_def by auto
+  ultimately show ?thesis using that by auto
+qed
+
+lemma meromorphic_pts_closure:
+  assumes merf: "f meromorphic_on D pts" 
+  shows "pts \<subseteq> closure (D - pts)"
+proof -
+  have "p islimpt (D - pts)" if "p\<in>pts" for p 
+  proof -
+    obtain r where "r>0" "ball p r \<subseteq> D" "ball p r \<inter> pts = {p}"
+      using meromorphic_isolated[OF merf \<open>p\<in>pts\<close>] by auto
+    from \<open>r>0\<close>
+    have "p islimpt ball p r - {p}"
+      by (meson open_ball ball_subset_cball in_mono islimpt_ball 
+          islimpt_punctured le_less open_contains_ball_eq)
+    moreover have " ball p r - {p} \<subseteq> D - pts"
+      using \<open>ball p r \<inter> pts = {p}\<close> \<open>ball p r \<subseteq> D\<close> by fastforce
+    ultimately show ?thesis 
+      using islimpt_subset by auto
+  qed
+  then show ?thesis by (simp add: islimpt_in_closure subset_eq)
+qed
+
+lemma nconst_imp_nzero_neighbour:
+  assumes merf: "f meromorphic_on D pts" 
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+    and "z\<in>D" and "connected D"
+  shows "(\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts)"
+proof -
+  obtain \<beta> where \<beta>:"\<beta> \<in> D - pts" "f \<beta>\<noteq>0"
+    using f_nconst by auto
+
+  have ?thesis if "z\<notin>pts" 
+  proof -
+    have "\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts"
+      apply (rule non_zero_neighbour_alt[of f "D-pts" z  \<beta>])
+      subgoal using merf meromorphic_on_def by blast
+      subgoal using merf meromorphic_imp_open_diff by auto
+      subgoal using assms(4) merf meromorphic_imp_connected_diff by blast
+      subgoal by (simp add: assms(3) that)
+      using \<beta> by auto
+    then show ?thesis by (auto elim:eventually_mono)
+  qed
+  moreover have ?thesis if "z\<in>pts" "\<not> f \<midarrow>z\<rightarrow> 0" 
+  proof -
+    have "\<forall>\<^sub>F w in at z. w \<in> D - pts"
+      using merf[unfolded meromorphic_on_def islimpt_iff_eventually] \<open>z\<in>D\<close>
+      using eventually_at_in_open' eventually_elim2 by fastforce
+    moreover have "\<forall>\<^sub>F w in at z. f w \<noteq> 0" 
+    proof (cases  "is_pole f z")
+      case True
+      then show ?thesis using non_zero_neighbour_pole by auto
+    next
+      case False
+      moreover have "not_essential f z"
+        using merf meromorphic_on_def that(1) by fastforce
+      ultimately obtain c where "c\<noteq>0" "f \<midarrow>z\<rightarrow> c"
+        by (metis \<open>\<not> f \<midarrow>z\<rightarrow> 0\<close> not_essential_def)
+      then show ?thesis 
+        using tendsto_imp_eventually_ne by auto
+    qed
+    ultimately show ?thesis by eventually_elim auto
+  qed
+  moreover have ?thesis if "z\<in>pts" "f \<midarrow>z\<rightarrow> 0" 
+  proof -
+    define ff where "ff=(\<lambda>x. if x=z then 0 else f x)"
+    define A where "A=D - (pts - {z})"
+
+    have "f holomorphic_on A - {z}"
+      by (metis A_def Diff_insert analytic_imp_holomorphic 
+            insert_Diff merf meromorphic_imp_analytic_on that(1))
+    moreover have "open A"  
+      using A_def merf meromorphic_imp_open_diff' by force
+    ultimately have "ff holomorphic_on A" 
+      using \<open>f \<midarrow>z\<rightarrow> 0\<close> unfolding ff_def
+      by (rule removable_singularity)
+    moreover have "connected A"
+    proof -
+      have "connected (D - pts)" 
+        using assms(4) merf meromorphic_imp_connected_diff by auto
+      moreover have "D - pts \<subseteq> A"
+        unfolding A_def by auto
+      moreover have "A \<subseteq> closure (D - pts)" unfolding A_def
+        by (smt (verit, ccfv_SIG) Diff_empty Diff_insert 
+            closure_subset insert_Diff_single insert_absorb 
+            insert_subset merf meromorphic_pts_closure that(1))
+      ultimately show ?thesis using connected_intermediate_closure 
+        by auto
+    qed
+    moreover have "z \<in> A" using A_def assms(3) by blast
+    moreover have "ff z = 0" unfolding ff_def by auto
+    moreover have "\<beta> \<in> A " using A_def \<beta>(1) by blast
+    moreover have "ff \<beta> \<noteq> 0" using \<beta>(1) \<beta>(2) ff_def that(1) by auto
+    ultimately obtain r where "0 < r" 
+        "ball z r \<subseteq> A" "\<And>x. x \<in> ball z r - {z} \<Longrightarrow> ff x \<noteq> 0"
+      using \<open>open A\<close> isolated_zeros[of ff A z \<beta>] by auto
+    then show ?thesis unfolding eventually_at ff_def
+      by (intro exI[of _ r]) (auto simp: A_def dist_commute ball_def)
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma nconst_imp_nzero_neighbour':
+  assumes merf: "f meromorphic_on D pts" 
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+    and "z\<in>D" and "connected D"
+  shows "\<forall>\<^sub>F w in at z. f w \<noteq> 0"
+  using nconst_imp_nzero_neighbour[OF assms]
+  by (auto elim:eventually_mono)
+
+lemma meromorphic_compact_finite_zeros:
+  assumes merf:"f meromorphic_on D pts" 
+    and "compact S" "S \<subseteq> D" "connected D"
+    and f_nconst:"\<not>(\<forall>w\<in>D-pts. f w=0)"
+  shows "finite ({x\<in>S. f x=0})"
+proof -
+  have "finite ({x\<in>S. f x=0 \<and> x \<notin> pts})" 
+  proof (rule ccontr)
+    assume "infinite {x \<in> S. f x = 0 \<and> x \<notin> pts}"
+    then obtain z where "z\<in>S" and z_lim:"z islimpt {x \<in> S. f x = 0
+                                              \<and> x \<notin> pts}"
+      using \<open>compact S\<close> unfolding compact_eq_Bolzano_Weierstrass
+      by auto
+  
+    from z_lim
+    have "\<exists>\<^sub>F x in at z. f x = 0 \<and> x \<in> S \<and> x \<notin> pts"
+      unfolding islimpt_iff_eventually not_eventually by simp
+    moreover have "\<forall>\<^sub>F w in at z. f w \<noteq> 0 \<and> w \<in> D - pts"
+      using nconst_imp_nzero_neighbour[OF merf f_nconst _ \<open>connected D\<close>]
+        \<open>z\<in>S\<close> \<open>S \<subseteq> D\<close>
+      by auto
+    ultimately have "\<exists>\<^sub>F x in at z. False"
+      by (simp add: eventually_mono frequently_def)
+    then show False by auto
+  qed
+  moreover have "finite (S \<inter> pts)" 
+    using meromorphic_compact_finite_pts[OF merf \<open>compact S\<close> \<open>S \<subseteq> D\<close>] .
+  ultimately have "finite ({x\<in>S. f x=0 \<and> x \<notin> pts} \<union> (S \<inter> pts))"
+    unfolding finite_Un by auto 
+  then show ?thesis by (elim rev_finite_subset) auto
+qed
+
+lemma meromorphic_onI [intro?]:
+  assumes "open A" "pts \<subseteq> A"
+  assumes "f holomorphic_on A - pts" "\<And>z. z \<in> A \<Longrightarrow> \<not>z islimpt pts"
+  assumes "\<And>z. z \<in> pts \<Longrightarrow> isolated_singularity_at f z"
+  assumes "\<And>z. z \<in> pts \<Longrightarrow> not_essential f z"
+  shows   "f meromorphic_on A pts"
+  using assms unfolding meromorphic_on_def by blast
+
+lemma Polygamma_plus_of_nat:
+  assumes "\<forall>k<m. z \<noteq> -of_nat k"
+  shows   "Polygamma n (z + of_nat m) =
+             Polygamma n z + (-1) ^ n * fact n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n)"
+  using assms
+proof (induction m)
+  case (Suc m)
+  have "Polygamma n (z + of_nat (Suc m)) = Polygamma n (z + of_nat m + 1)"
+    by (simp add: add_ac)
+  also have "\<dots> = Polygamma n (z + of_nat m) + (-1) ^ n * fact n * (1 / ((z + of_nat m) ^ Suc n))"
+    using Suc.prems by (subst Polygamma_plus1) (auto simp: add_eq_0_iff2)
+  also have "Polygamma n (z + of_nat m) =
+               Polygamma n z + (-1) ^ n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n) * fact n"
+    using Suc.prems by (subst Suc.IH) auto
+  finally show ?case
+    by (simp add: algebra_simps)
+qed auto
+
+lemma tendsto_Gamma [tendsto_intros]:
+  assumes "(f \<longlongrightarrow> c) F" "c \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  shows   "((\<lambda>z. Gamma (f z)) \<longlongrightarrow> Gamma c) F"
+  by (intro isCont_tendsto_compose[OF _ assms(1)] continuous_intros assms)
+
+lemma tendsto_Polygamma [tendsto_intros]:
+  fixes f :: "_ \<Rightarrow> 'a :: {real_normed_field,euclidean_space}"
+  assumes "(f \<longlongrightarrow> c) F" "c \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  shows   "((\<lambda>z. Polygamma n (f z)) \<longlongrightarrow> Polygamma n c) F"
+  by (intro isCont_tendsto_compose[OF _ assms(1)] continuous_intros assms)
+
+lemma analytic_on_Gamma' [analytic_intros]:
+  assumes "f analytic_on A" "\<forall>x\<in>A. f x \<notin> \<int>\<^sub>\<le>\<^sub>0" 
+  shows   "(\<lambda>z. Gamma (f z)) analytic_on A"
+  using analytic_on_compose_gen[OF assms(1) analytic_Gamma[of "f ` A"]] assms(2)
+  by (auto simp: o_def)
+
+lemma analytic_on_Polygamma' [analytic_intros]:
+  assumes "f analytic_on A" "\<forall>x\<in>A. f x \<notin> \<int>\<^sub>\<le>\<^sub>0" 
+  shows   "(\<lambda>z. Polygamma n (f z)) analytic_on A"
+  using analytic_on_compose_gen[OF assms(1) analytic_on_Polygamma[of "f ` A" n]] assms(2)
+  by (auto simp: o_def)
+
+lemma
+  shows is_pole_Polygamma: "is_pole (Polygamma n) (-of_nat m :: complex)"
+  and   zorder_Polygamma:  "zorder (Polygamma n) (-of_nat m) = -int (Suc n)"
+  and   residue_Polygamma: "residue (Polygamma n) (-of_nat m) = (if n = 0 then -1 else 0)"
+proof -
+  define g1 :: "complex \<Rightarrow> complex" where
+    "g1 = (\<lambda>z. Polygamma n (z + of_nat (Suc m)) +
+              (-1) ^ Suc n * fact n * (\<Sum>k<m. 1 / (z + of_nat k) ^ Suc n))"
+  define g :: "complex \<Rightarrow> complex" where
+    "g = (\<lambda>z. g1 z + (-1) ^ Suc n * fact n / (z + of_nat m) ^ Suc n)"
+  define F where "F = fps_to_fls (fps_expansion g1 (-of_nat m)) + fls_const ((-1) ^ Suc n * fact n) / fls_X ^ Suc n"
+  have F_altdef: "F = fps_to_fls (fps_expansion g1 (-of_nat m)) + fls_shift (n+1) (fls_const ((-1) ^ Suc n * fact n))"
+    by (simp add: F_def del: power_Suc)
+
+  have "\<not>(-of_nat m) islimpt (\<int>\<^sub>\<le>\<^sub>0 :: complex set)"
+    by (intro discrete_imp_not_islimpt[where e = 1])
+       (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  hence "eventually (\<lambda>z::complex. z \<notin> \<int>\<^sub>\<le>\<^sub>0) (at (-of_nat m))"
+    by (auto simp: islimpt_conv_frequently_at frequently_def)
+  hence ev: "eventually (\<lambda>z. Polygamma n z = g z) (at (-of_nat m))"
+  proof eventually_elim
+    case (elim z)
+    hence *: "\<forall>k<Suc m. z \<noteq> - of_nat k"
+      by auto
+    thus ?case
+      using Polygamma_plus_of_nat[of "Suc m" z n, OF *]
+      by (auto simp: g_def g1_def algebra_simps)
+  qed
+
+  have "(\<lambda>w. g (-of_nat m + w)) has_laurent_expansion F"
+    unfolding g_def F_def
+    by (intro laurent_expansion_intros has_laurent_expansion_fps analytic_at_imp_has_fps_expansion)
+       (auto simp: g1_def intro!: laurent_expansion_intros analytic_intros)
+  also have "?this \<longleftrightarrow> (\<lambda>w. Polygamma n (-of_nat m + w)) has_laurent_expansion F"
+    using ev by (intro has_laurent_expansion_cong refl)
+                (simp_all add: eq_commute at_to_0' eventually_filtermap)
+  finally have *: "(\<lambda>w. Polygamma n (-of_nat m + w)) has_laurent_expansion F" .
+
+  have subdegree: "fls_subdegree F = -int (Suc n)" unfolding F_def
+    by (subst fls_subdegree_add_eq2) (simp_all add: fls_subdegree_fls_to_fps fls_divide_subdegree)
+  have [simp]: "F \<noteq> 0"
+    using subdegree by auto
+  
+  show "is_pole (Polygamma n) (-of_nat m :: complex)"
+    using * by (rule has_laurent_expansion_imp_is_pole) (auto simp: subdegree)
+  show "zorder (Polygamma n) (-of_nat m :: complex) = -int (Suc n)"
+    by (subst has_laurent_expansion_zorder[OF *]) (auto simp: subdegree)
+  show "residue (Polygamma n) (-of_nat m :: complex) = (if n = 0 then -1 else 0)"
+    by (subst has_laurent_expansion_residue[OF *]) (auto simp: F_altdef)
+qed
+
+lemma Gamma_meromorphic_on [meromorphic_intros]: "Gamma meromorphic_on UNIV \<int>\<^sub>\<le>\<^sub>0"
+proof
+  show "\<not>z islimpt \<int>\<^sub>\<le>\<^sub>0" for z :: complex
+    by (intro discrete_imp_not_islimpt[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+next
+  fix z :: complex assume z: "z \<in> \<int>\<^sub>\<le>\<^sub>0"
+  then obtain n where n: "z = -of_nat n"
+    by (elim nonpos_Ints_cases')
+  show "not_essential Gamma z"
+    by (auto simp: n intro!: is_pole_imp_not_essential is_pole_Gamma)
+  have *: "open (-(\<int>\<^sub>\<le>\<^sub>0 - {z}))"
+    by (intro open_Compl discrete_imp_closed[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  have "Gamma holomorphic_on -(\<int>\<^sub>\<le>\<^sub>0 - {z}) - {z}"
+    by (intro holomorphic_intros) auto
+  thus "isolated_singularity_at Gamma z"
+    by (rule isolated_singularity_at_holomorphic) (use z * in auto)
+qed (auto intro!: holomorphic_intros)
+
+lemma Polygamma_meromorphic_on [meromorphic_intros]: "Polygamma n meromorphic_on UNIV \<int>\<^sub>\<le>\<^sub>0"
+proof
+  show "\<not>z islimpt \<int>\<^sub>\<le>\<^sub>0" for z :: complex
+    by (intro discrete_imp_not_islimpt[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+next
+  fix z :: complex assume z: "z \<in> \<int>\<^sub>\<le>\<^sub>0"
+  then obtain m where n: "z = -of_nat m"
+    by (elim nonpos_Ints_cases')
+  show "not_essential (Polygamma n) z"
+    by (auto simp: n intro!: is_pole_imp_not_essential is_pole_Polygamma)
+  have *: "open (-(\<int>\<^sub>\<le>\<^sub>0 - {z}))"
+    by (intro open_Compl discrete_imp_closed[of 1]) (auto elim!: nonpos_Ints_cases simp: dist_of_int)
+  have "Polygamma n holomorphic_on -(\<int>\<^sub>\<le>\<^sub>0 - {z}) - {z}"
+    by (intro holomorphic_intros) auto
+  thus "isolated_singularity_at (Polygamma n) z"
+    by (rule isolated_singularity_at_holomorphic) (use z * in auto)
+qed (auto intro!: holomorphic_intros)
+
+
+theorem argument_principle':
+  fixes f::"complex \<Rightarrow> complex" and poles s:: "complex set"
+  \<comment> \<open>\<^term>\<open>pz\<close> is the set of non-essential singularities and zeros\<close>
+  defines "pz \<equiv> {w\<in>s. f w = 0 \<or> w \<in> poles}"
+  assumes "open s" and
+          "connected s" and
+          f_holo:"f holomorphic_on s-poles" and
+          h_holo:"h holomorphic_on s" and
+          "valid_path g" and
+          loop:"pathfinish g = pathstart g" and
+          path_img:"path_image g \<subseteq> s - pz" and
+          homo:"\<forall>z. (z \<notin> s) \<longrightarrow> winding_number g z = 0" and
+          finite:"finite pz" and
+          poles:"\<forall>p\<in>s\<inter>poles. not_essential f p"
+  shows "contour_integral g (\<lambda>x. deriv f x * h x / f x) = 2 * pi * \<i> *
+          (\<Sum>p\<in>pz. winding_number g p * h p * zorder f p)"
+proof -
+  define ff where "ff = remove_sings f"
+
+  have finite':"finite (s \<inter> poles)"  
+    using finite unfolding pz_def by (auto elim:rev_finite_subset)
+
+  have isolated:"isolated_singularity_at f z" if "z\<in>s" for z 
+  proof (rule isolated_singularity_at_holomorphic)
+    show "f holomorphic_on (s-(poles-{z})) - {z}" 
+      by (metis Diff_empty Diff_insert Diff_insert0 Diff_subset 
+          f_holo holomorphic_on_subset insert_Diff)
+    show "open (s - (poles - {z}))" 
+      by (metis Diff_Diff_Int Int_Diff assms(2) finite' finite_Diff 
+          finite_imp_closed inf.idem open_Diff)
+    show "z \<in> s - (poles - {z})" 
+      using assms(4) that by auto
+  qed
+
+  have not_ess:"not_essential f w" if "w\<in>s" for w 
+    by (metis Diff_Diff_Int Diff_iff Int_Diff Int_absorb assms(2) 
+        f_holo finite' finite_imp_closed not_essential_holomorphic 
+        open_Diff poles that)
+
+  have nzero:"\<forall>\<^sub>F x in at w. f x \<noteq> 0" if "w\<in>s" for w
+  proof (rule ccontr) 
+    assume "\<not> (\<forall>\<^sub>F x in at w. f x \<noteq> 0)"
+    then have "\<exists>\<^sub>F x in at w. f x = 0" 
+      unfolding not_eventually by simp
+    moreover have "\<forall>\<^sub>F x in at w. x\<in>s" 
+      by (simp add: assms(2) eventually_at_in_open' that)
+    ultimately have "\<exists>\<^sub>F x in at w. x\<in>{w\<in>s. f w = 0}" 
+      apply (elim frequently_rev_mp)
+      by (auto elim:eventually_mono)
+    from frequently_at_imp_islimpt[OF this] 
+    have "w islimpt {w \<in> s. f w = 0}" .
+    then have "infinite({w \<in> s. f w = 0} \<inter> ball w 1)"
+      unfolding islimpt_eq_infinite_ball by auto
+    then have "infinite({w \<in> s. f w = 0})"
+      by auto
+    then have "infinite pz" unfolding pz_def 
+      by (smt (verit) Collect_mono_iff rev_finite_subset)
+    then show False using finite by auto
+  qed
+
+  obtain pts' where pts':"pts' \<subseteq> s \<inter> poles" 
+    "finite pts'" "ff holomorphic_on s - pts'" "\<forall>x\<in>pts'. is_pole ff x"
+    apply (elim get_all_poles_from_remove_sings
+        [of f,folded ff_def,rotated -1])
+    subgoal using f_holo by fastforce
+    using \<open>open s\<close> poles finite' by auto
+
+  have pts'_sub_pz:"{w \<in> s. ff w = 0 \<or> w \<in> pts'} \<subseteq> pz"
+  proof -
+    have "w\<in>poles" if "w\<in>s" "w\<in>pts'" for w 
+      by (meson in_mono le_infE pts'(1) that(2))
+    moreover have "f w=0" if" w\<in>s" "w\<notin>poles" "ff w=0" for w
+    proof -
+      have "\<not> is_pole f w"
+        by (metis DiffI Diff_Diff_Int Diff_subset assms(2) f_holo 
+            finite' finite_imp_closed inf.absorb_iff2 
+            not_is_pole_holomorphic open_Diff that(1) that(2))
+      then have "f \<midarrow>w\<rightarrow> 0" 
+        using remove_sings_eq_0_iff[OF not_ess[OF \<open>w\<in>s\<close>]] \<open>ff w=0\<close>
+        unfolding ff_def by auto
+      moreover have "f analytic_on {w}" 
+        using that(1,2) finite' f_holo assms(2)
+        by (metis Diff_Diff_Int Diff_empty Diff_iff Diff_subset 
+            double_diff finite_imp_closed 
+            holomorphic_on_imp_analytic_at open_Diff)
+      ultimately show ?thesis 
+        using ff_def remove_sings_at_analytic that(3) by presburger
+    qed
+    ultimately show ?thesis unfolding pz_def by auto
+  qed
+
+
+  have "contour_integral g (\<lambda>x. deriv f x * h x / f x)
+          = contour_integral g (\<lambda>x. deriv ff x * h x / ff x)"
+  proof (rule contour_integral_eq)
+    fix x assume "x \<in> path_image g" 
+    have "f analytic_on {x}"
+    proof (rule holomorphic_on_imp_analytic_at[of _ "s-poles"])
+      from finite' 
+      show "open (s - poles)" 
+        using \<open>open s\<close> 
+        by (metis Diff_Compl Diff_Diff_Int Diff_eq finite_imp_closed 
+            open_Diff)
+      show "x \<in> s - poles"
+        using path_img \<open>x \<in> path_image g\<close> unfolding pz_def by auto
+    qed (use f_holo in simp)
+    then show "deriv f x * h x / f x = deriv ff x * h x / ff x"
+      unfolding ff_def by auto
+  qed
+  also have "... = complex_of_real (2 * pi) * \<i> *
+                      (\<Sum>p\<in>{w \<in> s. ff w = 0 \<or> w \<in> pts'}. 
+                        winding_number g p * h p * of_int (zorder ff p))"
+  proof (rule argument_principle[OF \<open>open s\<close> \<open>connected s\<close>, of ff pts' h g])
+    show "path_image g \<subseteq> s - {w \<in> s. ff w = 0 \<or> w \<in> pts'}"
+      using path_img pts'_sub_pz  by auto
+    show "finite {w \<in> s. ff w = 0 \<or> w \<in> pts'}" 
+      using pts'_sub_pz finite 
+      using rev_finite_subset by blast  
+  qed (use pts' assms in auto)
+  also have "... = 2 * pi * \<i> *
+          (\<Sum>p\<in>pz. winding_number g p * h p * zorder f p)"
+  proof -
+    have "(\<Sum>p\<in>{w \<in> s. ff w = 0 \<or> w \<in> pts'}.
+       winding_number g p * h p * of_int (zorder ff p)) =
+      (\<Sum>p\<in>pz. winding_number g p * h p * of_int (zorder f p))"
+    proof (rule sum.mono_neutral_cong_left)
+      have "zorder f w = 0" 
+        if "w\<in>s" " f w = 0 \<or> w \<in> poles" "ff w \<noteq> 0" " w \<notin> pts'"
+        for w
+      proof -
+        define F where "F=laurent_expansion f w"
+        have has_l:"(\<lambda>x. f (w + x)) has_laurent_expansion F"
+          unfolding F_def
+          apply (rule not_essential_has_laurent_expansion)
+          using isolated not_ess \<open>w\<in>s\<close> by auto
+        from has_laurent_expansion_eventually_nonzero_iff[OF this]
+        have "F \<noteq>0"
+          using nzero \<open>w\<in>s\<close> by auto
+        from tendsto_0_subdegree_iff[OF has_l this] 
+        have "f \<midarrow>w\<rightarrow> 0 = (0 < fls_subdegree F)" .
+        moreover have "\<not> (is_pole f w \<or> f \<midarrow>w\<rightarrow> 0)"
+          using remove_sings_eq_0_iff[OF not_ess[OF \<open>w\<in>s\<close>]] \<open>ff w \<noteq> 0\<close>
+          unfolding ff_def by auto
+        moreover have "is_pole f w = (fls_subdegree F < 0)"
+          using is_pole_fls_subdegree_iff[OF has_l] .
+        ultimately have "fls_subdegree F = 0" by auto
+        then show ?thesis
+          using has_laurent_expansion_zorder[OF has_l \<open>F\<noteq>0\<close>] by auto
+      qed
+      then show "\<forall>i\<in>pz - {w \<in> s. ff w = 0 \<or> w \<in> pts'}.
+        winding_number g i * h i * of_int (zorder f i) = 0" 
+        unfolding pz_def by auto
+      show "\<And>x. x \<in> {w \<in> s. ff w = 0 \<or> w \<in> pts'} \<Longrightarrow>
+         winding_number g x * h x * of_int (zorder ff x) =
+         winding_number g x * h x * of_int (zorder f x)"
+        using isolated zorder_remove_sings[of f,folded ff_def] by auto
+    qed (use pts'_sub_pz finite in auto)
+    then show ?thesis by auto
+  qed
+  finally show ?thesis .
+qed
+
+lemma meromorphic_on_imp_isolated_singularity:
+  assumes "f meromorphic_on D pts" "z \<in> D"
+  shows   "isolated_singularity_at f z"
+  by (meson DiffI assms(1) assms(2) holomorphic_on_imp_analytic_at isolated_singularity_at_analytic 
+        meromorphic_imp_open_diff meromorphic_on_def)
+
+lemma meromorphic_imp_not_is_pole:
+  assumes "f meromorphic_on D pts" "z \<in> D - pts"
+  shows   "\<not>is_pole f z"
+proof -
+  from assms have "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at by blast
+  thus ?thesis
+    using analytic_at not_is_pole_holomorphic by blast
+qed
+
+lemma meromorphic_all_poles_iff_empty [simp]: "f meromorphic_on pts pts \<longleftrightarrow> pts = {}"
+  by (auto simp: meromorphic_on_def holomorphic_on_def open_imp_islimpt)
+
+lemma meromorphic_imp_nonsingular_point_exists:
+  assumes "f meromorphic_on A pts" "A \<noteq> {}"
+  obtains x where "x \<in> A - pts"
+proof -
+  have "A \<noteq> pts"
+    using assms by auto
+  moreover have "pts \<subseteq> A"
+    using assms by (auto simp: meromorphic_on_def)
+  ultimately show ?thesis
+    using that by blast
+qed
+
+lemma meromorphic_frequently_const_imp_const:
+  assumes "f meromorphic_on A pts" "connected A"
+  assumes "frequently (\<lambda>w. f w = c) (at z)"
+  assumes "z \<in> A - pts"
+  assumes "w \<in> A - pts"
+  shows   "f w = c"
+proof -
+  have "f w - c = 0"
+  proof (rule analytic_continuation[where f = "\<lambda>z. f z - c"])
+    show "(\<lambda>z. f z - c) holomorphic_on (A - pts)"
+      by (intro holomorphic_intros meromorphic_imp_holomorphic[OF assms(1)])
+    show [intro]: "open (A - pts)"
+      using assms meromorphic_imp_open_diff by blast
+    show "connected (A - pts)"
+      using assms meromorphic_imp_connected_diff by blast
+    show "{z\<in>A-pts. f z = c} \<subseteq> A - pts"
+      by blast
+    have "eventually (\<lambda>z. z \<in> A - pts) (at z)"
+      using assms by (intro eventually_at_in_open') auto
+    hence "frequently (\<lambda>z. f z = c \<and> z \<in> A - pts) (at z)"
+      by (intro frequently_eventually_frequently assms)
+    thus "z islimpt {z\<in>A-pts. f z = c}"
+      by (simp add: islimpt_conv_frequently_at conj_commute)
+  qed (use assms in auto)
+  thus ?thesis
+    by simp
+qed
+
+lemma meromorphic_imp_eventually_neq:
+  assumes "f meromorphic_on A pts" "connected A" "\<not>f constant_on A - pts"
+  assumes "z \<in> A - pts"
+  shows   "eventually (\<lambda>z. f z \<noteq> c) (at z)"
+proof (rule ccontr)
+  assume "\<not>eventually (\<lambda>z. f z \<noteq> c) (at z)"
+  hence *: "frequently (\<lambda>z. f z = c) (at z)"
+    by (auto simp: frequently_def)
+  have "\<forall>w\<in>A-pts. f w = c"
+    using meromorphic_frequently_const_imp_const [OF assms(1,2) * assms(4)] by blast
+  hence "f constant_on A - pts"
+    by (auto simp: constant_on_def)
+  thus False
+    using assms(3) by contradiction
+qed
+
+lemma meromorphic_frequently_const_imp_const':
+  assumes "f meromorphic_on A pts" "connected A" "\<forall>w\<in>pts. is_pole f w"
+  assumes "frequently (\<lambda>w. f w = c) (at z)"
+  assumes "z \<in> A"
+  assumes "w \<in> A"
+  shows   "f w = c"
+proof -
+  have "\<not>is_pole f z"
+    using frequently_const_imp_not_is_pole[OF assms(4)] .
+  with assms have z: "z \<in> A - pts"
+    by auto
+  have *: "f w = c" if "w \<in> A - pts" for w
+    using that meromorphic_frequently_const_imp_const [OF assms(1,2,4) z] by auto
+  have "\<not>is_pole f u" if "u \<in> A" for u
+  proof -
+    have "is_pole f u \<longleftrightarrow> is_pole (\<lambda>_. c) u"
+    proof (rule is_pole_cong)
+      have "eventually (\<lambda>w. w \<in> A - (pts - {u}) - {u}) (at u)"
+        by (intro eventually_at_in_open meromorphic_imp_open_diff' [OF assms(1)]) (use that in auto)
+      thus "eventually (\<lambda>w. f w = c) (at u)"
+        by eventually_elim (use * in auto)
+    qed auto
+    thus ?thesis
+      by auto
+  qed
+  moreover have "pts \<subseteq> A"
+    using assms(1) by (simp add: meromorphic_on_def)
+  ultimately have "pts = {}"
+    using assms(3) by auto
+  with * and \<open>w \<in> A\<close> show ?thesis
+    by blast
+qed
+
+lemma meromorphic_imp_eventually_neq':
+  assumes "f meromorphic_on A pts" "connected A" "\<forall>w\<in>pts. is_pole f w" "\<not>f constant_on A"
+  assumes "z \<in> A"
+  shows   "eventually (\<lambda>z. f z \<noteq> c) (at z)"
+proof (rule ccontr)
+  assume "\<not>eventually (\<lambda>z. f z \<noteq> c) (at z)"
+  hence *: "frequently (\<lambda>z. f z = c) (at z)"
+    by (auto simp: frequently_def)
+  have "\<forall>w\<in>A. f w = c"
+    using meromorphic_frequently_const_imp_const' [OF assms(1,2,3) * assms(5)] by blast
+  hence "f constant_on A"
+    by (auto simp: constant_on_def)
+  thus False
+    using assms(4) by contradiction
+qed
+
+lemma zorder_eq_0_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z = 0 \<longleftrightarrow> \<not>is_pole f z \<and> f z \<noteq> 0"
+proof (cases "z \<in> pts")
+  case True
+  from assms obtain F where F: "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+    by (metis True meromorphic_on_def not_essential_has_laurent_expansion) (* TODO: better lemmas *)
+  from F and assms(4) have [simp]: "F \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff by blast
+  show ?thesis using True assms(2)
+    using is_pole_fls_subdegree_iff [OF F] has_laurent_expansion_zorder [OF F]
+    by auto
+next
+  case False
+  have ana: "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at False assms by blast
+  hence "\<not>is_pole f z"
+    using analytic_at not_is_pole_holomorphic by blast
+  moreover have "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
+    using assms(4) by (intro eventually_frequently) auto
+  ultimately show ?thesis using zorder_eq_0_iff[OF ana] False
+    by auto
+qed
+
+lemma zorder_pos_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z > 0 \<longleftrightarrow> \<not>is_pole f z \<and> f z = 0"
+proof (cases "z \<in> pts")
+  case True
+  from assms obtain F where F: "(\<lambda>x. f (z + x)) has_laurent_expansion F"
+    by (metis True meromorphic_on_def not_essential_has_laurent_expansion) (* TODO: better lemmas *)
+  from F and assms(4) have [simp]: "F \<noteq> 0"
+    using has_laurent_expansion_eventually_nonzero_iff by blast
+  show ?thesis using True assms(2)
+    using is_pole_fls_subdegree_iff [OF F] has_laurent_expansion_zorder [OF F]
+    by auto
+next
+  case False
+  have ana: "f analytic_on {z}"
+    using meromorphic_on_imp_analytic_at False assms by blast
+  hence "\<not>is_pole f z"
+    using analytic_at not_is_pole_holomorphic by blast
+  moreover have "frequently (\<lambda>w. f w \<noteq> 0) (at z)"
+    using assms(4) by (intro eventually_frequently) auto
+  ultimately show ?thesis using zorder_pos_iff'[OF ana] False
+    by auto
+qed
+
+lemma zorder_neg_iff_meromorphic:
+  assumes "f meromorphic_on A pts" "\<forall>z\<in>pts. is_pole f z" "z \<in> A"
+  assumes "eventually (\<lambda>x. f x \<noteq> 0) (at z)"
+  shows   "zorder f z < 0 \<longleftrightarrow> is_pole f z"
+proof -
+  have "frequently (\<lambda>x. f x \<noteq> 0) (at z)"
+    using assms by (intro eventually_frequently) auto
+  moreover from assms have "isolated_singularity_at f z" "not_essential f z"
+    using meromorphic_on_imp_isolated_singularity meromorphic_on_imp_not_essential by blast+
+  ultimately show ?thesis
+    using isolated_pole_imp_neg_zorder neg_zorder_imp_is_pole by blast
+qed
+
+lemma meromorphic_on_imp_discrete:
+  assumes mero:"f meromorphic_on S pts" and "connected S" 
+    and nconst:"\<not> (\<forall>w\<in>S - pts. f w = c)"
+  shows "discrete {x\<in>S. f x=c}" 
+proof -
+  define g where "g=(\<lambda>x. f x - c)"
+  have "\<forall>\<^sub>F w in at z. g w \<noteq> 0" if "z \<in> S" for z
+  proof (rule nconst_imp_nzero_neighbour'[of g S pts z])
+    show "g meromorphic_on S pts" using mero unfolding g_def
+      by (auto intro:meromorphic_intros)
+    show "\<not> (\<forall>w\<in>S - pts. g w = 0)" using nconst unfolding g_def by auto
+  qed fact+
+  then show ?thesis 
+    unfolding discrete_altdef g_def 
+    using eventually_mono by fastforce
+qed
+
+lemma meromorphic_isolated_in:
+  assumes merf: "f meromorphic_on D pts" "p\<in>pts"
+  shows "p isolated_in pts"
+  by (meson assms isolated_in_islimpt_iff meromorphic_on_def subsetD)
+
+lemma remove_sings_constant_on:
+  assumes merf: "f meromorphic_on D pts" and "connected D"
+      and const:"f constant_on (D - pts)"
+    shows "(remove_sings f) constant_on D"
+proof -
+  have remove_sings_const: "remove_sings f constant_on D - pts" 
+    using const
+    by (metis constant_onE merf meromorphic_on_imp_analytic_at remove_sings_at_analytic)
+
+  have ?thesis if "D = {}"
+    using that unfolding constant_on_def by auto
+  moreover have ?thesis if "D\<noteq>{}" "{x\<in>pts. is_pole f x} = {}"
+  proof -
+    obtain \<xi> where "\<xi> \<in> (D - pts)" "\<xi> islimpt (D - pts)"
+    proof -
+      have "open (D - pts)"
+        using meromorphic_imp_open_diff[OF merf] .
+      moreover have "(D - pts) \<noteq> {}" using \<open>D\<noteq>{}\<close>
+        by (metis Diff_empty closure_empty merf 
+            meromorphic_pts_closure subset_empty)
+      ultimately show ?thesis using open_imp_islimpt that by auto
+    qed
+    moreover have "remove_sings f holomorphic_on D"
+      using remove_sings_holomorphic_on[OF merf] that by auto
+    moreover note remove_sings_const
+    moreover have "open D" 
+      using assms(1) meromorphic_on_def by blast
+    ultimately show ?thesis
+      using Conformal_Mappings.analytic_continuation'
+              [of "remove_sings f" D "D-pts" \<xi>] \<open>connected D\<close>
+      by auto
+  qed
+  moreover have ?thesis if "D\<noteq>{}" "{x\<in>pts. is_pole f x} \<noteq> {}"
+  proof -
+    define PP where "PP={x\<in>D. is_pole f x}"
+    have "remove_sings f meromorphic_on D PP"
+      using merf unfolding PP_def
+      apply (elim remove_sings_meromorphic_on)
+      subgoal using assms(1) meromorphic_on_def by force
+      subgoal using meromorphic_pole_subset merf by auto
+      done
+    moreover have "remove_sings f constant_on D - PP"
+    proof -
+      obtain \<xi> where "\<xi> \<in> f ` (D - pts)" 
+        by (metis Diff_empty Diff_eq_empty_iff \<open>D \<noteq> {}\<close> assms(1) 
+            closure_empty ex_in_conv imageI meromorphic_pts_closure)
+      have \<xi>:"\<forall>x\<in>D - pts. f x = \<xi>"    
+        by (metis \<open>\<xi> \<in> f ` (D - pts)\<close> assms(3) constant_on_def image_iff)
+
+      have "remove_sings f x = \<xi>" if "x\<in>D - PP" for x
+      proof (cases "x\<in>pts")
+        case True
+        then have"x isolated_in pts" 
+          using meromorphic_isolated_in[OF merf] by auto
+        then obtain T0 where T0:"open T0" "T0 \<inter> pts = {x}"
+          unfolding isolated_in_def by auto
+        obtain T1 where T1:"open T1" "x\<in>T1" "T1 \<subseteq> D"
+          using merf unfolding meromorphic_on_def 
+          using True by blast
+        define T2 where "T2 = T1 \<inter> T0"
+        have "open T2" "x\<in>T2" "T2 - {x} \<subseteq> D - pts"
+          using T0 T1 unfolding T2_def by auto
+        then have "\<forall>w\<in>T2. w\<noteq>x \<longrightarrow> f w =\<xi>"
+          using \<xi> by auto
+        then have "\<forall>\<^sub>F x in at x. f x = \<xi>" 
+          unfolding eventually_at_topological
+          using \<open>open T2\<close> \<open>x\<in>T2\<close> by auto
+        then have "f \<midarrow>x\<rightarrow> \<xi>" 
+          using tendsto_eventually by auto
+        then show ?thesis by blast
+      next
+        case False
+        then show ?thesis 
+          using \<open>\<forall>x\<in>D - pts. f x = \<xi>\<close> assms(1) 
+            meromorphic_on_imp_analytic_at that by auto
+      qed
+
+      then show ?thesis unfolding constant_on_def by auto
+    qed
+
+    moreover have "is_pole (remove_sings f) x" if "x\<in>PP" for x
+    proof -
+      have "isolated_singularity_at f x"
+        by (metis (mono_tags, lifting) DiffI PP_def assms(1) 
+            isolated_singularity_at_analytic mem_Collect_eq 
+            meromorphic_on_def meromorphic_on_imp_analytic_at that)
+      then show ?thesis using that unfolding PP_def by simp
+    qed
+    ultimately show ?thesis
+      using meromorphic_imp_constant_on
+            [of "remove_sings f" D PP]
+      by auto
+  qed
+  ultimately show ?thesis by auto
+qed
+
+lemma meromorphic_eq_meromorphic_extend:
+  assumes "f meromorphic_on A pts1" "g meromorphic_on A pts1" "\<not>z islimpt pts2"
+  assumes "\<And>z. z \<in> A - pts2 \<Longrightarrow> f z = g z" "pts1 \<subseteq> pts2" "z \<in> A - pts1"
+  shows   "f z = g z"
+proof -
+  have "g analytic_on {z}"
+    using assms by (intro meromorphic_on_imp_analytic_at[OF assms(2)]) auto
+  hence "g \<midarrow>z\<rightarrow> g z"
+    using analytic_at_imp_isCont isContD by blast
+  also have "?this \<longleftrightarrow> f \<midarrow>z\<rightarrow> g z"
+  proof (intro filterlim_cong)
+    have "eventually (\<lambda>w. w \<notin> pts2) (at z)"
+      using assms by (auto simp: islimpt_conv_frequently_at frequently_def)
+    moreover have "eventually (\<lambda>w. w \<in> A) (at z)"
+      using assms by (intro eventually_at_in_open') (auto simp: meromorphic_on_def)
+    ultimately show "\<forall>\<^sub>F x in at z. g x = f x"
+      by eventually_elim (use assms in auto)
+  qed auto
+  finally have "f \<midarrow>z\<rightarrow> g z" .
+  moreover have "f analytic_on {z}"
+    using assms by (intro meromorphic_on_imp_analytic_at[OF assms(1)]) auto
+  hence "f \<midarrow>z\<rightarrow> f z"
+    using analytic_at_imp_isCont isContD by blast
+  ultimately show ?thesis
+    using tendsto_unique by force
+qed
+
+lemma meromorphic_constant_on_extend:
+  assumes "f constant_on A - pts1" "f meromorphic_on A pts1" "f meromorphic_on A pts2" "pts2 \<subseteq> pts1"
+  shows   "f constant_on A - pts2"
+proof -
+  from assms(1) obtain c where c: "\<And>z. z \<in> A - pts1 \<Longrightarrow> f z = c"
+    unfolding constant_on_def by auto
+  have "f z = c" if "z \<in> A - pts2" for z
+    using assms(3)
+  proof (rule meromorphic_eq_meromorphic_extend[where z = z])
+    show "(\<lambda>a. c) meromorphic_on A pts2"
+      by (intro meromorphic_on_const) (use assms in \<open>auto simp: meromorphic_on_def\<close>)
+    show "\<not>z islimpt pts1"
+      using that assms by (auto simp: meromorphic_on_def)
+  qed (use assms c that in auto)
+  thus ?thesis
+    by (auto simp: constant_on_def)
+qed
+
+lemma meromorphic_remove_sings_constant_on_imp_constant_on:
+  assumes "f meromorphic_on A pts"
+  assumes "remove_sings f constant_on A"
+  shows   "f constant_on A - pts"
+proof -
+  from assms(2) obtain c where c: "\<And>z. z \<in> A \<Longrightarrow> remove_sings f z = c"
+    by (auto simp: constant_on_def)
+  have "f z = c" if "z \<in> A - pts" for z
+    using meromorphic_on_imp_analytic_at[OF assms(1) that] c[of z] that
+    by auto
+  thus ?thesis
+    by (auto simp: constant_on_def)
+qed
+
+
+
+
+definition singularities_on :: "complex set \<Rightarrow> (complex \<Rightarrow> complex) \<Rightarrow> complex set" where
+  "singularities_on A f =
+     {z\<in>A. isolated_singularity_at f z \<and> not_essential f z \<and> \<not>f analytic_on {z}}"
+
+lemma singularities_on_subset: "singularities_on A f \<subseteq> A"
+  by (auto simp: singularities_on_def)
+
+lemma pole_in_singularities_on:
+  assumes "f meromorphic_on A pts" "z \<in> A" "is_pole f z"
+  shows   "z \<in> singularities_on A f"
+  unfolding singularities_on_def not_essential_def using assms
+  using analytic_at_imp_no_pole meromorphic_on_imp_isolated_singularity by force
+
+
+lemma meromorphic_on_subset_pts:
+  assumes "f meromorphic_on A pts" "pts' \<subseteq> pts" "f analytic_on pts - pts'"
+  shows   "f meromorphic_on A pts'"
+proof
+  show "open A" "pts' \<subseteq> A"
+    using assms by (auto simp: meromorphic_on_def)
+  show "isolated_singularity_at f z" "not_essential f z" if "z \<in> pts'" for z
+    using assms that by (auto simp: meromorphic_on_def)
+  show "\<not>z islimpt pts'" if "z \<in> A" for z
+    using assms that islimpt_subset unfolding meromorphic_on_def by blast
+  have "f analytic_on A - pts"
+    using assms(1) meromorphic_imp_analytic by blast
+  with assms have "f analytic_on (A - pts) \<union> (pts - pts')"
+    by (subst analytic_on_Un) auto
+  also have "(A - pts) \<union> (pts - pts') = A - pts'"
+    using assms by (auto simp: meromorphic_on_def)
+  finally show "f holomorphic_on A - pts'"
+    using analytic_imp_holomorphic by blast
+qed
+
+lemma meromorphic_on_imp_superset_singularities_on:
+  assumes "f meromorphic_on A pts"
+  shows   "singularities_on A f \<subseteq> pts"
+proof
+  fix z assume "z \<in> singularities_on A f"
+  hence "z \<in> A" "\<not>f analytic_on {z}"
+    by (auto simp: singularities_on_def)
+  with assms show "z \<in> pts"
+    by (meson DiffI meromorphic_on_imp_analytic_at)
+qed  
+
+lemma meromorphic_on_singularities_on:
+  assumes "f meromorphic_on A pts"
+  shows   "f meromorphic_on A (singularities_on A f)"
+  using assms meromorphic_on_imp_superset_singularities_on[OF assms]
+proof (rule meromorphic_on_subset_pts)
+  have "f analytic_on {z}" if "z \<in> pts - singularities_on A f" for z
+    using that assms by (auto simp: singularities_on_def meromorphic_on_def)
+  thus "f analytic_on pts - singularities_on A f"
+    using analytic_on_analytic_at by blast
+qed
+
+theorem Residue_theorem_inside:
+  assumes f: "f meromorphic_on s pts"
+             "simply_connected s"
+  assumes g: "valid_path g"
+             "pathfinish g = pathstart g"
+             "path_image g \<subseteq> s - pts"
+  defines "pts1 \<equiv> pts \<inter> inside (path_image g)"
+  shows "finite pts1"
+    and "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+proof - 
+  note [dest] = valid_path_imp_path
+  have cl_g [intro]: "closed (path_image g)"
+    using g by (auto intro!: closed_path_image)
+  have "open s"
+    using f(1) by (auto simp: meromorphic_on_def)
+  define pts2 where "pts2 = pts - pts1"
+
+  define A where "A = path_image g \<union> inside (path_image g)"
+  have "closed A"
+    unfolding A_def using g by (intro closed_path_image_Un_inside) auto
+  moreover have "bounded A"
+    unfolding A_def using g by (auto intro!: bounded_path_image bounded_inside)
+  ultimately have 1: "compact A"
+    using compact_eq_bounded_closed by blast
+  have 2: "open (s - pts2)"
+    using f by (auto intro!: meromorphic_imp_open_diff' [OF f(1)] simp: pts2_def)
+  have 3: "A \<subseteq> s - pts2"
+    unfolding A_def pts2_def pts1_def
+    using f(2) g(3) 2 subset_simply_connected_imp_inside_subset[of s "path_image g"] \<open>open s\<close>
+    by auto
+
+  obtain \<epsilon> where \<epsilon>: "\<epsilon> > 0" "(\<Union>x\<in>A. ball x \<epsilon>) \<subseteq> s - pts2"
+    using compact_subset_open_imp_ball_epsilon_subset[OF 1 2 3] by blast
+  define B where "B = (\<Union>x\<in>A. ball x \<epsilon>)"
+
+  have "finite (A \<inter> pts)"
+    using 1 3 by (intro meromorphic_compact_finite_pts[OF f(1)]) auto
+  also have "A \<inter> pts = pts1"
+    unfolding pts1_def using g by (auto simp: A_def)
+  finally show fin: "finite pts1" .
+
+  show "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+  proof (rule Residue_theorem)
+    show "open B"
+      by (auto simp: B_def)
+  next
+    have "connected A"
+      unfolding A_def using g
+      by (intro connected_with_inside closed_path_image connected_path_image) auto
+    hence "connected (A \<union> B)"
+      unfolding B_def using g \<open>\<epsilon> > 0\<close> f(2)
+      by (intro connected_Un_UN connected_path_image valid_path_imp_path)
+         (auto simp: simply_connected_imp_connected)
+    also have "A \<union> B = B"
+      using \<epsilon>(1) by (auto simp: B_def)
+    finally show "connected B" .
+  next
+    have "f holomorphic_on (s - pts)"
+      by (intro meromorphic_imp_holomorphic f)
+    moreover have "B - pts1 \<subseteq> s - pts"
+      using \<epsilon> unfolding B_def by (auto simp: pts1_def pts2_def)
+    ultimately show "f holomorphic_on (B - pts1)"
+      by (rule holomorphic_on_subset)
+  next
+    have "path_image g \<subseteq> A - pts1"
+      using g unfolding pts1_def by (auto simp: A_def)
+    also have "\<dots> \<subseteq> B - pts1"
+      unfolding B_def using \<epsilon>(1) by auto
+    finally show "path_image g \<subseteq> B - pts1" .
+  next
+    show "\<forall>z. z \<notin> B \<longrightarrow> winding_number g z = 0"
+    proof safe
+      fix z assume z: "z \<notin> B"
+      hence "z \<notin> A"
+        using \<epsilon>(1) by (auto simp: B_def)
+      hence "z \<in> outside (path_image g)"
+        unfolding A_def by (simp add: union_with_inside)
+      thus "winding_number g z = 0"
+        using g by (intro winding_number_zero_in_outside) auto
+    qed
+  qed (use g fin in auto)
+qed
+
+theorem Residue_theorem':
+  assumes f: "f meromorphic_on s pts"
+             "simply_connected s"
+  assumes g: "valid_path g" 
+             "pathfinish g = pathstart g"
+             "path_image g \<subseteq> s - pts"
+  assumes pts': "finite pts'"
+                "pts' \<subseteq> s"
+                "\<And>z. z \<in> pts - pts' \<Longrightarrow> winding_number g z = 0"
+  shows "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts'. winding_number g p * residue f p)"
+proof -
+  note [dest] = valid_path_imp_path
+  define pts1 where "pts1 = pts \<inter> inside (path_image g)"
+
+  have "contour_integral g f = 2 * pi * \<i> * (\<Sum>p\<in>pts1. winding_number g p * residue f p)"
+    unfolding pts1_def by (intro Residue_theorem_inside[OF f g])
+  also have "(\<Sum>p\<in>pts1. winding_number g p * residue f p) =
+             (\<Sum>p\<in>pts'. winding_number g p * residue f p)"
+  proof (intro sum.mono_neutral_cong refl)
+    show "finite pts1"
+      unfolding pts1_def by (intro Residue_theorem_inside[OF f g])
+    show "finite pts'"
+      by fact
+  next
+    fix z assume z: "z \<in> pts' - pts1"
+    show "winding_number g z * residue f z = 0"
+    proof (cases "z \<in> pts")
+      case True
+      with z have "z \<notin> path_image g \<union> inside (path_image g)"
+        using g(3) by (auto simp: pts1_def)
+      hence "z \<in> outside (path_image g)"
+        by (simp add: union_with_inside)
+      hence "winding_number g z = 0"
+        using g by (intro winding_number_zero_in_outside) auto
+      thus ?thesis
+        by simp
+    next
+      case False
+      with z pts' have "z \<in> s - pts"
+        by auto
+      with f(1) have "f analytic_on {z}"
+        by (intro meromorphic_on_imp_analytic_at)
+      hence "residue f z = 0"
+        using analytic_at residue_holo by blast
+      thus ?thesis
+        by simp
+    qed
+  next
+    fix z assume z: "z \<in> pts1 - pts'"
+    hence "winding_number g z = 0"
+      using pts' by (auto simp: pts1_def)
+    thus "winding_number g z * residue f z = 0"
+      by simp
+  qed
+  finally show ?thesis .
+qed
+
+end
\ No newline at end of file