src/HOL/Library/Word.thy
changeset 72515 c7038c397ae3
parent 72512 83b5911c0164
child 72611 c7bc3e70a8c7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Word.thy	Thu Oct 29 10:03:03 2020 +0000
@@ -0,0 +1,4588 @@
+(*  Title:      HOL/Library/Word.thy
+    Author:     Jeremy Dawson and Gerwin Klein, NICTA, et. al.
+*)
+
+section \<open>A type of finite bit strings\<close>
+
+theory Word
+imports
+  "HOL-Library.Type_Length"
+  "HOL-Library.Boolean_Algebra"
+  "HOL-Library.Bit_Operations"
+begin
+
+subsection \<open>Preliminaries\<close>
+
+lemma signed_take_bit_decr_length_iff:
+  \<open>signed_take_bit (LENGTH('a::len) - Suc 0) k = signed_take_bit (LENGTH('a) - Suc 0) l
+    \<longleftrightarrow> take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close>
+  by (cases \<open>LENGTH('a)\<close>)
+    (simp_all add: signed_take_bit_eq_iff_take_bit_eq)
+
+
+subsection \<open>Fundamentals\<close>
+
+subsubsection \<open>Type definition\<close>
+
+quotient_type (overloaded) 'a word = int / \<open>\<lambda>k l. take_bit LENGTH('a) k = take_bit LENGTH('a::len) l\<close>
+  morphisms rep Word by (auto intro!: equivpI reflpI sympI transpI)
+
+hide_const (open) rep \<comment> \<open>only for foundational purpose\<close>
+hide_const (open) Word \<comment> \<open>only for code generation\<close>
+
+
+subsubsection \<open>Basic arithmetic\<close>
+
+instantiation word :: (len) comm_ring_1
+begin
+
+lift_definition zero_word :: \<open>'a word\<close>
+  is 0 .
+
+lift_definition one_word :: \<open>'a word\<close>
+  is 1 .
+
+lift_definition plus_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>(+)\<close>
+  by (auto simp add: take_bit_eq_mod intro: mod_add_cong)
+
+lift_definition minus_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>(-)\<close>
+  by (auto simp add: take_bit_eq_mod intro: mod_diff_cong)
+
+lift_definition uminus_word :: \<open>'a word \<Rightarrow> 'a word\<close>
+  is uminus
+  by (auto simp add: take_bit_eq_mod intro: mod_minus_cong)
+
+lift_definition times_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>(*)\<close>
+  by (auto simp add: take_bit_eq_mod intro: mod_mult_cong)
+
+instance
+  by (standard; transfer) (simp_all add: algebra_simps)
+
+end
+
+context
+  includes lifting_syntax
+  notes
+    power_transfer [transfer_rule]
+    transfer_rule_of_bool [transfer_rule]
+    transfer_rule_numeral [transfer_rule]
+    transfer_rule_of_nat [transfer_rule]
+    transfer_rule_of_int [transfer_rule]
+begin
+
+lemma power_transfer_word [transfer_rule]:
+  \<open>(pcr_word ===> (=) ===> pcr_word) (^) (^)\<close>
+  by transfer_prover
+
+lemma [transfer_rule]:
+  \<open>((=) ===> pcr_word) of_bool of_bool\<close>
+  by transfer_prover
+
+lemma [transfer_rule]:
+  \<open>((=) ===> pcr_word) numeral numeral\<close>
+  by transfer_prover
+
+lemma [transfer_rule]:
+  \<open>((=) ===> pcr_word) int of_nat\<close>
+  by transfer_prover
+
+lemma [transfer_rule]:
+  \<open>((=) ===> pcr_word) (\<lambda>k. k) of_int\<close>
+proof -
+  have \<open>((=) ===> pcr_word) of_int of_int\<close>
+    by transfer_prover
+  then show ?thesis by (simp add: id_def)
+qed
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> (\<longleftrightarrow>)) even ((dvd) 2 :: 'a::len word \<Rightarrow> bool)\<close>
+proof -
+  have even_word_unfold: "even k \<longleftrightarrow> (\<exists>l. take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l))" (is "?P \<longleftrightarrow> ?Q")
+    for k :: int
+  proof
+    assume ?P
+    then show ?Q
+      by auto
+  next
+    assume ?Q
+    then obtain l where "take_bit LENGTH('a) k = take_bit LENGTH('a) (2 * l)" ..
+    then have "even (take_bit LENGTH('a) k)"
+      by simp
+    then show ?P
+      by simp
+  qed
+  show ?thesis by (simp only: even_word_unfold [abs_def] dvd_def [where ?'a = "'a word", abs_def])
+    transfer_prover
+qed
+
+end
+
+lemma exp_eq_zero_iff [simp]:
+  \<open>2 ^ n = (0 :: 'a::len word) \<longleftrightarrow> n \<ge> LENGTH('a)\<close>
+  by transfer simp
+
+lemma word_exp_length_eq_0 [simp]:
+  \<open>(2 :: 'a::len word) ^ LENGTH('a) = 0\<close>
+  by simp
+
+
+subsubsection \<open>Basic tool setup\<close>
+
+ML_file \<open>Tools/word_lib.ML\<close>
+
+
+subsubsection \<open>Basic code generation setup\<close>
+
+context
+begin
+
+qualified lift_definition the_int :: \<open>'a::len word \<Rightarrow> int\<close>
+  is \<open>take_bit LENGTH('a)\<close> .
+
+end
+
+lemma [code abstype]:
+  \<open>Word.Word (Word.the_int w) = w\<close>
+  by transfer simp
+
+lemma Word_eq_word_of_int [code_post, simp]:
+  \<open>Word.Word = of_int\<close>
+  by (rule; transfer) simp
+
+quickcheck_generator word
+  constructors:
+    \<open>0 :: 'a::len word\<close>,
+    \<open>numeral :: num \<Rightarrow> 'a::len word\<close>
+
+instantiation word :: (len) equal
+begin
+
+lift_definition equal_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> bool\<close>
+  is \<open>\<lambda>k l. take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close>
+  by simp
+
+instance
+  by (standard; transfer) rule
+
+end
+
+lemma [code]:
+  \<open>HOL.equal v w \<longleftrightarrow> HOL.equal (Word.the_int v) (Word.the_int w)\<close>
+  by transfer (simp add: equal)
+
+lemma [code]:
+  \<open>Word.the_int 0 = 0\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>Word.the_int 1 = 1\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>Word.the_int (v + w) = take_bit LENGTH('a) (Word.the_int v + Word.the_int w)\<close>
+  for v w :: \<open>'a::len word\<close>
+  by transfer (simp add: take_bit_add)
+
+lemma [code]:
+  \<open>Word.the_int (- w) = (let k = Word.the_int w in if w = 0 then 0 else 2 ^ LENGTH('a) - k)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (auto simp add: take_bit_eq_mod zmod_zminus1_eq_if)
+
+lemma [code]:
+  \<open>Word.the_int (v - w) = take_bit LENGTH('a) (Word.the_int v - Word.the_int w)\<close>
+  for v w :: \<open>'a::len word\<close>
+  by transfer (simp add: take_bit_diff)
+
+lemma [code]:
+  \<open>Word.the_int (v * w) = take_bit LENGTH('a) (Word.the_int v * Word.the_int w)\<close>
+  for v w :: \<open>'a::len word\<close>
+  by transfer (simp add: take_bit_mult)
+
+
+subsubsection \<open>Basic conversions\<close>
+
+abbreviation word_of_nat :: \<open>nat \<Rightarrow> 'a::len word\<close>
+  where \<open>word_of_nat \<equiv> of_nat\<close>
+
+abbreviation word_of_int :: \<open>int \<Rightarrow> 'a::len word\<close>
+  where \<open>word_of_int \<equiv> of_int\<close>
+
+lemma word_of_nat_eq_iff:
+  \<open>word_of_nat m = (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m = take_bit LENGTH('a) n\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma word_of_int_eq_iff:
+  \<open>word_of_int k = (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close>
+  by transfer rule
+
+lemma word_of_nat_eq_0_iff [simp]:
+  \<open>word_of_nat n = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd n\<close>
+  using word_of_nat_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff)
+
+lemma word_of_int_eq_0_iff [simp]:
+  \<open>word_of_int k = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd k\<close>
+  using word_of_int_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff)
+
+context semiring_1
+begin
+
+lift_definition unsigned :: \<open>'b::len word \<Rightarrow> 'a\<close>
+  is \<open>of_nat \<circ> nat \<circ> take_bit LENGTH('b)\<close>
+  by simp
+
+lemma unsigned_0 [simp]:
+  \<open>unsigned 0 = 0\<close>
+  by transfer simp
+
+lemma unsigned_1 [simp]:
+  \<open>unsigned 1 = 1\<close>
+  by transfer simp
+
+lemma unsigned_numeral [simp]:
+  \<open>unsigned (numeral n :: 'b::len word) = of_nat (take_bit LENGTH('b) (numeral n))\<close>
+  by transfer (simp add: nat_take_bit_eq)
+
+lemma unsigned_neg_numeral [simp]:
+  \<open>unsigned (- numeral n :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) (- numeral n)))\<close>
+  by transfer simp
+
+end
+
+context semiring_1
+begin
+
+lemma unsigned_of_nat [simp]:
+  \<open>unsigned (word_of_nat n :: 'b::len word) = of_nat (take_bit LENGTH('b) n)\<close>
+  by transfer (simp add: nat_eq_iff take_bit_of_nat)
+
+lemma unsigned_of_int [simp]:
+  \<open>unsigned (word_of_int k :: 'b::len word) = of_nat (nat (take_bit LENGTH('b) k))\<close>
+  by transfer simp
+
+end
+
+context semiring_char_0
+begin
+
+lemma unsigned_word_eqI:
+  \<open>v = w\<close> if \<open>unsigned v = unsigned w\<close>
+  using that by transfer (simp add: eq_nat_nat_iff)
+
+lemma word_eq_iff_unsigned:
+  \<open>v = w \<longleftrightarrow> unsigned v = unsigned w\<close>
+  by (auto intro: unsigned_word_eqI)
+
+lemma inj_unsigned [simp]:
+  \<open>inj unsigned\<close>
+  by (rule injI) (simp add: unsigned_word_eqI)
+
+lemma unsigned_eq_0_iff:
+  \<open>unsigned w = 0 \<longleftrightarrow> w = 0\<close>
+  using word_eq_iff_unsigned [of w 0] by simp
+
+end
+
+context ring_1
+begin
+
+lift_definition signed :: \<open>'b::len word \<Rightarrow> 'a\<close>
+  is \<open>of_int \<circ> signed_take_bit (LENGTH('b) - Suc 0)\<close>
+  by (simp flip: signed_take_bit_decr_length_iff)
+
+lemma signed_0 [simp]:
+  \<open>signed 0 = 0\<close>
+  by transfer simp
+
+lemma signed_1 [simp]:
+  \<open>signed (1 :: 'b::len word) = (if LENGTH('b) = 1 then - 1 else 1)\<close>
+  by (transfer fixing: uminus; cases \<open>LENGTH('b)\<close>) (auto dest: gr0_implies_Suc)
+
+lemma signed_minus_1 [simp]:
+  \<open>signed (- 1 :: 'b::len word) = - 1\<close>
+  by (transfer fixing: uminus) simp
+
+lemma signed_numeral [simp]:
+  \<open>signed (numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (numeral n))\<close>
+  by transfer simp
+
+lemma signed_neg_numeral [simp]:
+  \<open>signed (- numeral n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - 1) (- numeral n))\<close>
+  by transfer simp
+
+lemma signed_of_nat [simp]:
+  \<open>signed (word_of_nat n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) (int n))\<close>
+  by transfer simp
+
+lemma signed_of_int [simp]:
+  \<open>signed (word_of_int n :: 'b::len word) = of_int (signed_take_bit (LENGTH('b) - Suc 0) n)\<close>
+  by transfer simp
+
+end
+
+context ring_char_0
+begin
+
+lemma signed_word_eqI:
+  \<open>v = w\<close> if \<open>signed v = signed w\<close>
+  using that by transfer (simp flip: signed_take_bit_decr_length_iff)
+
+lemma word_eq_iff_signed:
+  \<open>v = w \<longleftrightarrow> signed v = signed w\<close>
+  by (auto intro: signed_word_eqI)
+
+lemma inj_signed [simp]:
+  \<open>inj signed\<close>
+  by (rule injI) (simp add: signed_word_eqI)
+
+lemma signed_eq_0_iff:
+  \<open>signed w = 0 \<longleftrightarrow> w = 0\<close>
+  using word_eq_iff_signed [of w 0] by simp
+
+end
+
+abbreviation unat :: \<open>'a::len word \<Rightarrow> nat\<close>
+  where \<open>unat \<equiv> unsigned\<close>
+
+abbreviation uint :: \<open>'a::len word \<Rightarrow> int\<close>
+  where \<open>uint \<equiv> unsigned\<close>
+
+abbreviation sint :: \<open>'a::len word \<Rightarrow> int\<close>
+  where \<open>sint \<equiv> signed\<close>
+
+abbreviation ucast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>ucast \<equiv> unsigned\<close>
+
+abbreviation scast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>scast \<equiv> signed\<close>
+
+context
+  includes lifting_syntax
+begin
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> (=)) (nat \<circ> take_bit LENGTH('a)) (unat :: 'a::len word \<Rightarrow> nat)\<close>
+  using unsigned.transfer [where ?'a = nat] by simp
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> (=)) (take_bit LENGTH('a)) (uint :: 'a::len word \<Rightarrow> int)\<close>
+  using unsigned.transfer [where ?'a = int] by (simp add: comp_def)
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> (=)) (signed_take_bit (LENGTH('a) - Suc 0)) (sint :: 'a::len word \<Rightarrow> int)\<close>
+  using signed.transfer [where ?'a = int] by simp
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> pcr_word) (take_bit LENGTH('a)) (ucast :: 'a::len word \<Rightarrow> 'b::len word)\<close>
+proof (rule rel_funI)
+  fix k :: int and w :: \<open>'a word\<close>
+  assume \<open>pcr_word k w\<close>
+  then have \<open>w = word_of_int k\<close>
+    by (simp add: pcr_word_def cr_word_def relcompp_apply)
+  moreover have \<open>pcr_word (take_bit LENGTH('a) k) (ucast (word_of_int k :: 'a word))\<close>
+    by transfer (simp add: pcr_word_def cr_word_def relcompp_apply)
+  ultimately show \<open>pcr_word (take_bit LENGTH('a) k) (ucast w)\<close>
+    by simp
+qed
+
+lemma [transfer_rule]:
+  \<open>(pcr_word ===> pcr_word) (signed_take_bit (LENGTH('a) - Suc 0)) (scast :: 'a::len word \<Rightarrow> 'b::len word)\<close>
+proof (rule rel_funI)
+  fix k :: int and w :: \<open>'a word\<close>
+  assume \<open>pcr_word k w\<close>
+  then have \<open>w = word_of_int k\<close>
+    by (simp add: pcr_word_def cr_word_def relcompp_apply)
+  moreover have \<open>pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast (word_of_int k :: 'a word))\<close>
+    by transfer (simp add: pcr_word_def cr_word_def relcompp_apply)
+  ultimately show \<open>pcr_word (signed_take_bit (LENGTH('a) - Suc 0) k) (scast w)\<close>
+    by simp
+qed
+
+end
+
+lemma of_nat_unat [simp]:
+  \<open>of_nat (unat w) = unsigned w\<close>
+  by transfer simp
+
+lemma of_int_uint [simp]:
+  \<open>of_int (uint w) = unsigned w\<close>
+  by transfer simp
+
+lemma of_int_sint [simp]:
+  \<open>of_int (sint a) = signed a\<close>
+  by transfer (simp_all add: take_bit_signed_take_bit)
+
+lemma nat_uint_eq [simp]:
+  \<open>nat (uint w) = unat w\<close>
+  by transfer simp
+
+lemma sgn_uint_eq [simp]:
+  \<open>sgn (uint w) = of_bool (w \<noteq> 0)\<close>
+  by transfer (simp add: less_le)
+
+text \<open>Aliasses only for code generation\<close>
+
+context
+begin
+
+qualified lift_definition of_int :: \<open>int \<Rightarrow> 'a::len word\<close>
+  is \<open>take_bit LENGTH('a)\<close> .
+
+qualified lift_definition of_nat :: \<open>nat \<Rightarrow> 'a::len word\<close>
+  is \<open>int \<circ> take_bit LENGTH('a)\<close> .
+
+qualified lift_definition the_nat :: \<open>'a::len word \<Rightarrow> nat\<close>
+  is \<open>nat \<circ> take_bit LENGTH('a)\<close> by simp
+
+qualified lift_definition the_signed_int :: \<open>'a::len word \<Rightarrow> int\<close>
+  is \<open>signed_take_bit (LENGTH('a) - Suc 0)\<close> by (simp add: signed_take_bit_decr_length_iff)
+
+qualified lift_definition cast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  is \<open>take_bit LENGTH('a)\<close> by simp
+
+qualified lift_definition signed_cast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  is \<open>signed_take_bit (LENGTH('a) - Suc 0)\<close> by (metis signed_take_bit_decr_length_iff)
+
+end
+
+lemma [code_abbrev, simp]:
+  \<open>Word.the_int = uint\<close>
+  by transfer rule
+
+lemma [code]:
+  \<open>Word.the_int (Word.of_int k :: 'a::len word) = take_bit LENGTH('a) k\<close>
+  by transfer simp
+
+lemma [code_abbrev, simp]:
+  \<open>Word.of_int = word_of_int\<close>
+  by (rule; transfer) simp
+
+lemma [code]:
+  \<open>Word.the_int (Word.of_nat n :: 'a::len word) = take_bit LENGTH('a) (int n)\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma [code_abbrev, simp]:
+  \<open>Word.of_nat = word_of_nat\<close>
+  by (rule; transfer) (simp add: take_bit_of_nat)
+
+lemma [code]:
+  \<open>Word.the_nat w = nat (Word.the_int w)\<close>
+  by transfer simp
+
+lemma [code_abbrev, simp]:
+  \<open>Word.the_nat = unat\<close>
+  by (rule; transfer) simp
+
+lemma [code]:
+  \<open>Word.the_signed_int w = signed_take_bit (LENGTH('a) - Suc 0) (Word.the_int w)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (simp add: signed_take_bit_take_bit)
+
+lemma [code_abbrev, simp]:
+  \<open>Word.the_signed_int = sint\<close>
+  by (rule; transfer) simp
+
+lemma [code]:
+  \<open>Word.the_int (Word.cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_int w)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer simp
+
+lemma [code_abbrev, simp]:
+  \<open>Word.cast = ucast\<close>
+  by (rule; transfer) simp
+
+lemma [code]:
+  \<open>Word.the_int (Word.signed_cast w :: 'b::len word) = take_bit LENGTH('b) (Word.the_signed_int w)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer simp
+
+lemma [code_abbrev, simp]:
+  \<open>Word.signed_cast = scast\<close>
+  by (rule; transfer) simp
+
+lemma [code]:
+  \<open>unsigned w = of_nat (nat (Word.the_int w))\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>signed w = of_int (Word.the_signed_int w)\<close>
+  by transfer simp
+
+
+subsubsection \<open>Basic ordering\<close>
+
+instantiation word :: (len) linorder
+begin
+
+lift_definition less_eq_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
+  is "\<lambda>a b. take_bit LENGTH('a) a \<le> take_bit LENGTH('a) b"
+  by simp
+
+lift_definition less_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
+  is "\<lambda>a b. take_bit LENGTH('a) a < take_bit LENGTH('a) b"
+  by simp
+
+instance
+  by (standard; transfer) auto
+
+end
+
+interpretation word_order: ordering_top \<open>(\<le>)\<close> \<open>(<)\<close> \<open>- 1 :: 'a::len word\<close>
+  by (standard; transfer) (simp add: take_bit_eq_mod zmod_minus1)
+
+interpretation word_coorder: ordering_top \<open>(\<ge>)\<close> \<open>(>)\<close> \<open>0 :: 'a::len word\<close>
+  by (standard; transfer) simp
+
+lemma word_of_nat_less_eq_iff:
+  \<open>word_of_nat m \<le> (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m \<le> take_bit LENGTH('a) n\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma word_of_int_less_eq_iff:
+  \<open>word_of_int k \<le> (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k \<le> take_bit LENGTH('a) l\<close>
+  by transfer rule
+
+lemma word_of_nat_less_iff:
+  \<open>word_of_nat m < (word_of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m < take_bit LENGTH('a) n\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma word_of_int_less_iff:
+  \<open>word_of_int k < (word_of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close>
+  by transfer rule
+
+lemma word_le_def [code]:
+  "a \<le> b \<longleftrightarrow> uint a \<le> uint b"
+  by transfer rule
+
+lemma word_less_def [code]:
+  "a < b \<longleftrightarrow> uint a < uint b"
+  by transfer rule
+
+lemma word_greater_zero_iff:
+  \<open>a > 0 \<longleftrightarrow> a \<noteq> 0\<close> for a :: \<open>'a::len word\<close>
+  by transfer (simp add: less_le)
+
+lemma of_nat_word_less_eq_iff:
+  \<open>of_nat m \<le> (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m \<le> take_bit LENGTH('a) n\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma of_nat_word_less_iff:
+  \<open>of_nat m < (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m < take_bit LENGTH('a) n\<close>
+  by transfer (simp add: take_bit_of_nat)
+
+lemma of_int_word_less_eq_iff:
+  \<open>of_int k \<le> (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k \<le> take_bit LENGTH('a) l\<close>
+  by transfer rule
+
+lemma of_int_word_less_iff:
+  \<open>of_int k < (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close>
+  by transfer rule
+
+
+
+subsection \<open>Enumeration\<close>
+
+lemma inj_on_word_of_nat:
+  \<open>inj_on (word_of_nat :: nat \<Rightarrow> 'a::len word) {0..<2 ^ LENGTH('a)}\<close>
+  by (rule inj_onI; transfer) (simp_all add: take_bit_int_eq_self)
+
+lemma UNIV_word_eq_word_of_nat:
+  \<open>(UNIV :: 'a::len word set) = word_of_nat ` {0..<2 ^ LENGTH('a)}\<close> (is \<open>_ = ?A\<close>)
+proof
+  show \<open>word_of_nat ` {0..<2 ^ LENGTH('a)} \<subseteq> UNIV\<close>
+    by simp
+  show \<open>UNIV \<subseteq> ?A\<close>
+  proof
+    fix w :: \<open>'a word\<close>
+    show \<open>w \<in> (word_of_nat ` {0..<2 ^ LENGTH('a)} :: 'a word set)\<close>
+      by (rule image_eqI [of _ _ \<open>unat w\<close>]; transfer) simp_all
+  qed
+qed
+
+instantiation word :: (len) enum
+begin
+
+definition enum_word :: \<open>'a word list\<close>
+  where \<open>enum_word = map word_of_nat [0..<2 ^ LENGTH('a)]\<close>
+
+definition enum_all_word :: \<open>('a word \<Rightarrow> bool) \<Rightarrow> bool\<close>
+  where \<open>enum_all_word = Ball UNIV\<close>
+
+definition enum_ex_word :: \<open>('a word \<Rightarrow> bool) \<Rightarrow> bool\<close>
+  where \<open>enum_ex_word = Bex UNIV\<close>
+
+lemma [code]:
+  \<open>Enum.enum_all P \<longleftrightarrow> Ball UNIV P\<close>
+  \<open>Enum.enum_ex P \<longleftrightarrow> Bex UNIV P\<close> for P :: \<open>'a word \<Rightarrow> bool\<close>
+  by (simp_all add: enum_all_word_def enum_ex_word_def)
+
+instance
+  by standard (simp_all add: UNIV_word_eq_word_of_nat inj_on_word_of_nat enum_word_def enum_all_word_def enum_ex_word_def distinct_map)
+
+end
+
+
+subsection \<open>Bit-wise operations\<close>
+
+instantiation word :: (len) semiring_modulo
+begin
+
+lift_definition divide_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>a b. take_bit LENGTH('a) a div take_bit LENGTH('a) b\<close>
+  by simp
+
+lift_definition modulo_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>a b. take_bit LENGTH('a) a mod take_bit LENGTH('a) b\<close>
+  by simp
+
+instance proof
+  show "a div b * b + a mod b = a" for a b :: "'a word"
+  proof transfer
+    fix k l :: int
+    define r :: int where "r = 2 ^ LENGTH('a)"
+    then have r: "take_bit LENGTH('a) k = k mod r" for k
+      by (simp add: take_bit_eq_mod)
+    have "k mod r = ((k mod r) div (l mod r) * (l mod r)
+      + (k mod r) mod (l mod r)) mod r"
+      by (simp add: div_mult_mod_eq)
+    also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r
+      + (k mod r) mod (l mod r)) mod r"
+      by (simp add: mod_add_left_eq)
+    also have "... = (((k mod r) div (l mod r) * l) mod r
+      + (k mod r) mod (l mod r)) mod r"
+      by (simp add: mod_mult_right_eq)
+    finally have "k mod r = ((k mod r) div (l mod r) * l
+      + (k mod r) mod (l mod r)) mod r"
+      by (simp add: mod_simps)
+    with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l
+      + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k"
+      by simp
+  qed
+qed
+
+end
+
+instance word :: (len) semiring_parity
+proof
+  show "\<not> 2 dvd (1::'a word)"
+    by transfer simp
+  show even_iff_mod_2_eq_0: "2 dvd a \<longleftrightarrow> a mod 2 = 0"
+    for a :: "'a word"
+    by transfer (simp_all add: mod_2_eq_odd take_bit_Suc)
+  show "\<not> 2 dvd a \<longleftrightarrow> a mod 2 = 1"
+    for a :: "'a word"
+    by transfer (simp_all add: mod_2_eq_odd take_bit_Suc)
+qed
+
+lemma word_bit_induct [case_names zero even odd]:
+  \<open>P a\<close> if word_zero: \<open>P 0\<close>
+    and word_even: \<open>\<And>a. P a \<Longrightarrow> 0 < a \<Longrightarrow> a < 2 ^ (LENGTH('a) - Suc 0) \<Longrightarrow> P (2 * a)\<close>
+    and word_odd: \<open>\<And>a. P a \<Longrightarrow> a < 2 ^ (LENGTH('a) - Suc 0) \<Longrightarrow> P (1 + 2 * a)\<close>
+  for P and a :: \<open>'a::len word\<close>
+proof -
+  define m :: nat where \<open>m = LENGTH('a) - Suc 0\<close>
+  then have l: \<open>LENGTH('a) = Suc m\<close>
+    by simp
+  define n :: nat where \<open>n = unat a\<close>
+  then have \<open>n < 2 ^ LENGTH('a)\<close>
+    by transfer (simp add: take_bit_eq_mod)
+  then have \<open>n < 2 * 2 ^ m\<close>
+    by (simp add: l)
+  then have \<open>P (of_nat n)\<close>
+  proof (induction n rule: nat_bit_induct)
+    case zero
+    show ?case
+      by simp (rule word_zero)
+  next
+    case (even n)
+    then have \<open>n < 2 ^ m\<close>
+      by simp
+    with even.IH have \<open>P (of_nat n)\<close>
+      by simp
+    moreover from \<open>n < 2 ^ m\<close> even.hyps have \<open>0 < (of_nat n :: 'a word)\<close>
+      by (auto simp add: word_greater_zero_iff l)
+    moreover from \<open>n < 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\<close>
+      using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>]
+      by (simp add: l take_bit_eq_mod)
+    ultimately have \<open>P (2 * of_nat n)\<close>
+      by (rule word_even)
+    then show ?case
+      by simp
+  next
+    case (odd n)
+    then have \<open>Suc n \<le> 2 ^ m\<close>
+      by simp
+    with odd.IH have \<open>P (of_nat n)\<close>
+      by simp
+    moreover from \<open>Suc n \<le> 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - Suc 0)\<close>
+      using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>]
+      by (simp add: l take_bit_eq_mod)
+    ultimately have \<open>P (1 + 2 * of_nat n)\<close>
+      by (rule word_odd)
+    then show ?case
+      by simp
+  qed
+  moreover have \<open>of_nat (nat (uint a)) = a\<close>
+    by transfer simp
+  ultimately show ?thesis
+    by (simp add: n_def)
+qed
+
+lemma bit_word_half_eq:
+  \<open>(of_bool b + a * 2) div 2 = a\<close>
+    if \<open>a < 2 ^ (LENGTH('a) - Suc 0)\<close>
+    for a :: \<open>'a::len word\<close>
+proof (cases \<open>2 \<le> LENGTH('a::len)\<close>)
+  case False
+  have \<open>of_bool (odd k) < (1 :: int) \<longleftrightarrow> even k\<close> for k :: int
+    by auto
+  with False that show ?thesis
+    by transfer (simp add: eq_iff)
+next
+  case True
+  obtain n where length: \<open>LENGTH('a) = Suc n\<close>
+    by (cases \<open>LENGTH('a)\<close>) simp_all
+  show ?thesis proof (cases b)
+    case False
+    moreover have \<open>a * 2 div 2 = a\<close>
+    using that proof transfer
+      fix k :: int
+      from length have \<open>k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\<close>
+        by simp
+      moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close>
+      with \<open>LENGTH('a) = Suc n\<close>
+      have \<open>k mod 2 ^ LENGTH('a) = k mod 2 ^ n\<close>
+        by (simp add: take_bit_eq_mod divmod_digit_0)
+      ultimately have \<open>take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\<close>
+        by (simp add: take_bit_eq_mod)
+      with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2)
+        = take_bit LENGTH('a) k\<close>
+        by simp
+    qed
+    ultimately show ?thesis
+      by simp
+  next
+    case True
+    moreover have \<open>(1 + a * 2) div 2 = a\<close>
+    using that proof transfer
+      fix k :: int
+      from length have \<open>(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\<close>
+        using pos_zmod_mult_2 [of \<open>2 ^ n\<close> k] by (simp add: ac_simps)
+      moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close>
+      with \<open>LENGTH('a) = Suc n\<close>
+      have \<open>k mod 2 ^ LENGTH('a) = k mod 2 ^ n\<close>
+        by (simp add: take_bit_eq_mod divmod_digit_0)
+      ultimately have \<open>take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\<close>
+        by (simp add: take_bit_eq_mod)
+      with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2)
+        = take_bit LENGTH('a) k\<close>
+        by (auto simp add: take_bit_Suc)
+    qed
+    ultimately show ?thesis
+      by simp
+  qed
+qed
+
+lemma even_mult_exp_div_word_iff:
+  \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> \<not> (
+    m \<le> n \<and>
+    n < LENGTH('a) \<and> odd (a div 2 ^ (n - m)))\<close> for a :: \<open>'a::len word\<close>
+  by transfer
+    (auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff,
+      simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int)
+
+instantiation word :: (len) semiring_bits
+begin
+
+lift_definition bit_word :: \<open>'a word \<Rightarrow> nat \<Rightarrow> bool\<close>
+  is \<open>\<lambda>k n. n < LENGTH('a) \<and> bit k n\<close>
+proof
+  fix k l :: int and n :: nat
+  assume *: \<open>take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close>
+  show \<open>n < LENGTH('a) \<and> bit k n \<longleftrightarrow> n < LENGTH('a) \<and> bit l n\<close>
+  proof (cases \<open>n < LENGTH('a)\<close>)
+    case True
+    from * have \<open>bit (take_bit LENGTH('a) k) n \<longleftrightarrow> bit (take_bit LENGTH('a) l) n\<close>
+      by simp
+    then show ?thesis
+      by (simp add: bit_take_bit_iff)
+  next
+    case False
+    then show ?thesis
+      by simp
+  qed
+qed
+
+instance proof
+  show \<open>P a\<close> if stable: \<open>\<And>a. a div 2 = a \<Longrightarrow> P a\<close>
+    and rec: \<open>\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a)\<close>
+  for P and a :: \<open>'a word\<close>
+  proof (induction a rule: word_bit_induct)
+    case zero
+    have \<open>0 div 2 = (0::'a word)\<close>
+      by transfer simp
+    with stable [of 0] show ?case
+      by simp
+  next
+    case (even a)
+    with rec [of a False] show ?case
+      using bit_word_half_eq [of a False] by (simp add: ac_simps)
+  next
+    case (odd a)
+    with rec [of a True] show ?case
+      using bit_word_half_eq [of a True] by (simp add: ac_simps)
+  qed
+  show \<open>bit a n \<longleftrightarrow> odd (a div 2 ^ n)\<close> for a :: \<open>'a word\<close> and n
+    by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit bit_iff_odd_drop_bit)
+  show \<open>0 div a = 0\<close>
+    for a :: \<open>'a word\<close>
+    by transfer simp
+  show \<open>a div 1 = a\<close>
+    for a :: \<open>'a word\<close>
+    by transfer simp
+  show \<open>a mod b div b = 0\<close>
+    for a b :: \<open>'a word\<close>
+    apply transfer
+    apply (simp add: take_bit_eq_mod)
+    apply (subst (3) mod_pos_pos_trivial [of _ \<open>2 ^ LENGTH('a)\<close>])
+      apply simp_all
+     apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power)
+    using pos_mod_bound [of \<open>2 ^ LENGTH('a)\<close>] apply simp
+  proof -
+    fix aa :: int and ba :: int
+    have f1: "\<And>i n. (i::int) mod 2 ^ n = 0 \<or> 0 < i mod 2 ^ n"
+      by (metis le_less take_bit_eq_mod take_bit_nonnegative)
+    have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \<and> ba mod 2 ^ len_of (TYPE('a)::'a itself) \<noteq> 0 \<or> aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)"
+      by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power)
+    then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)"
+      using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound)
+  qed
+  show \<open>(1 + a) div 2 = a div 2\<close>
+    if \<open>even a\<close>
+    for a :: \<open>'a word\<close>
+    using that by transfer
+      (auto dest: le_Suc_ex simp add: mod_2_eq_odd take_bit_Suc elim!: evenE)
+  show \<open>(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \<noteq> 0 \<and> n \<le> m) * 2 ^ (m - n)\<close>
+    for m n :: nat
+    by transfer (simp, simp add: exp_div_exp_eq)
+  show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)"
+    for a :: "'a word" and m n :: nat
+    apply transfer
+    apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div)
+    apply (simp add: drop_bit_take_bit)
+    done
+  show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n"
+    for a :: "'a word" and m n :: nat
+    by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps)
+  show \<open>a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\<close>
+    if \<open>m \<le> n\<close> for a :: "'a word" and m n :: nat
+    using that apply transfer
+    apply (auto simp flip: take_bit_eq_mod)
+           apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin)
+    done
+  show \<open>a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\<close>
+    for a :: "'a word" and m n :: nat
+    by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin)
+  show \<open>even ((2 ^ m - 1) div (2::'a word) ^ n) \<longleftrightarrow> 2 ^ n = (0::'a word) \<or> m \<le> n\<close>
+    for m n :: nat
+    by transfer (auto simp add: take_bit_of_mask even_mask_div_iff)
+  show \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::'a word) ^ n = 0 \<or> m \<le> n \<and> even (a div 2 ^ (n - m))\<close>
+    for a :: \<open>'a word\<close> and m n :: nat
+  proof transfer
+    show \<open>even (take_bit LENGTH('a) (k * 2 ^ m) div take_bit LENGTH('a) (2 ^ n)) \<longleftrightarrow>
+      n < m
+      \<or> take_bit LENGTH('a) ((2::int) ^ n) = take_bit LENGTH('a) 0
+      \<or> (m \<le> n \<and> even (take_bit LENGTH('a) k div take_bit LENGTH('a) (2 ^ (n - m))))\<close>
+    for m n :: nat and k l :: int
+      by (auto simp flip: take_bit_eq_mod drop_bit_eq_div push_bit_eq_mult
+        simp add: div_push_bit_of_1_eq_drop_bit drop_bit_take_bit drop_bit_push_bit_int [of n m])
+  qed
+qed
+
+end
+
+lemma bit_word_eqI:
+  \<open>a = b\<close> if \<open>\<And>n. n < LENGTH('a) \<Longrightarrow> bit a n \<longleftrightarrow> bit b n\<close>
+  for a b :: \<open>'a::len word\<close>
+  using that by transfer (auto simp add: nat_less_le bit_eq_iff bit_take_bit_iff)
+
+lemma bit_imp_le_length:
+  \<open>n < LENGTH('a)\<close> if \<open>bit w n\<close>
+    for w :: \<open>'a::len word\<close>
+  using that by transfer simp
+
+lemma not_bit_length [simp]:
+  \<open>\<not> bit w LENGTH('a)\<close> for w :: \<open>'a::len word\<close>
+  by transfer simp
+
+instantiation word :: (len) semiring_bit_shifts
+begin
+
+lift_definition push_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is push_bit
+proof -
+  show \<open>take_bit LENGTH('a) (push_bit n k) = take_bit LENGTH('a) (push_bit n l)\<close>
+    if \<open>take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close> for k l :: int and n :: nat
+  proof -
+    from that
+    have \<open>take_bit (LENGTH('a) - n) (take_bit LENGTH('a) k)
+      = take_bit (LENGTH('a) - n) (take_bit LENGTH('a) l)\<close>
+      by simp
+    moreover have \<open>min (LENGTH('a) - n) LENGTH('a) = LENGTH('a) - n\<close>
+      by simp
+    ultimately show ?thesis
+      by (simp add: take_bit_push_bit)
+  qed
+qed
+
+lift_definition drop_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>n. drop_bit n \<circ> take_bit LENGTH('a)\<close>
+  by (simp add: take_bit_eq_mod)
+
+lift_definition take_bit_word :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>n. take_bit (min LENGTH('a) n)\<close>
+  by (simp add: ac_simps) (simp only: flip: take_bit_take_bit)
+
+instance proof
+  show \<open>push_bit n a = a * 2 ^ n\<close> for n :: nat and a :: \<open>'a word\<close>
+    by transfer (simp add: push_bit_eq_mult)
+  show \<open>drop_bit n a = a div 2 ^ n\<close> for n :: nat and a :: \<open>'a word\<close>
+    by transfer (simp flip: drop_bit_eq_div add: drop_bit_take_bit)
+  show \<open>take_bit n a = a mod 2 ^ n\<close> for n :: nat and a :: \<open>'a word\<close>
+    by transfer (auto simp flip: take_bit_eq_mod)
+qed
+
+end
+
+lemma [code]:
+  \<open>push_bit n w = w * 2 ^ n\<close> for w :: \<open>'a::len word\<close>
+  by (fact push_bit_eq_mult)
+
+lemma [code]:
+  \<open>Word.the_int (drop_bit n w) = drop_bit n (Word.the_int w)\<close>
+  by transfer (simp add: drop_bit_take_bit min_def le_less less_diff_conv)
+
+lemma [code]:
+  \<open>Word.the_int (take_bit n w) = (if n < LENGTH('a::len) then take_bit n (Word.the_int w) else Word.the_int w)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (simp add: not_le not_less ac_simps min_absorb2)
+
+
+instantiation word :: (len) ring_bit_operations
+begin
+
+lift_definition not_word :: \<open>'a word \<Rightarrow> 'a word\<close>
+  is not
+  by (simp add: take_bit_not_iff)
+
+lift_definition and_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is \<open>and\<close>
+  by simp
+
+lift_definition or_word :: \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is or
+  by simp
+
+lift_definition xor_word ::  \<open>'a word \<Rightarrow> 'a word \<Rightarrow> 'a word\<close>
+  is xor
+  by simp
+
+lift_definition mask_word :: \<open>nat \<Rightarrow> 'a word\<close>
+  is mask
+  .
+
+instance by (standard; transfer)
+  (auto simp add: minus_eq_not_minus_1 mask_eq_exp_minus_1
+    bit_not_iff bit_and_iff bit_or_iff bit_xor_iff)
+
+end
+
+lemma [code_abbrev]:
+  \<open>push_bit n 1 = (2 :: 'a::len word) ^ n\<close>
+  by (fact push_bit_of_1)
+
+lemma [code]:
+  \<open>NOT w = Word.of_int (NOT (Word.the_int w))\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (simp add: take_bit_not_take_bit) 
+
+lemma [code]:
+  \<open>Word.the_int (v AND w) = Word.the_int v AND Word.the_int w\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>Word.the_int (v OR w) = Word.the_int v OR Word.the_int w\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>Word.the_int (v XOR w) = Word.the_int v XOR Word.the_int w\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>Word.the_int (mask n :: 'a::len word) = mask (min LENGTH('a) n)\<close>
+  by transfer simp
+
+context
+  includes lifting_syntax
+begin
+
+lemma set_bit_word_transfer [transfer_rule]:
+  \<open>((=) ===> pcr_word ===> pcr_word) set_bit set_bit\<close>
+  by (unfold set_bit_def) transfer_prover
+
+lemma unset_bit_word_transfer [transfer_rule]:
+  \<open>((=) ===> pcr_word ===> pcr_word) unset_bit unset_bit\<close>
+  by (unfold unset_bit_def) transfer_prover
+
+lemma flip_bit_word_transfer [transfer_rule]:
+  \<open>((=) ===> pcr_word ===> pcr_word) flip_bit flip_bit\<close>
+  by (unfold flip_bit_def) transfer_prover
+
+lemma signed_take_bit_word_transfer [transfer_rule]:
+  \<open>((=) ===> pcr_word ===> pcr_word)
+    (\<lambda>n k. signed_take_bit n (take_bit LENGTH('a::len) k))
+    (signed_take_bit :: nat \<Rightarrow> 'a word \<Rightarrow> 'a word)\<close>
+proof -
+  let ?K = \<open>\<lambda>n (k :: int). take_bit (min LENGTH('a) n) k OR of_bool (n < LENGTH('a) \<and> bit k n) * NOT (mask n)\<close>
+  let ?W = \<open>\<lambda>n (w :: 'a word). take_bit n w OR of_bool (bit w n) * NOT (mask n)\<close>
+  have \<open>((=) ===> pcr_word ===> pcr_word) ?K ?W\<close>
+    by transfer_prover
+  also have \<open>?K = (\<lambda>n k. signed_take_bit n (take_bit LENGTH('a::len) k))\<close>
+    by (simp add: fun_eq_iff signed_take_bit_def bit_take_bit_iff ac_simps)
+  also have \<open>?W = signed_take_bit\<close>
+    by (simp add: fun_eq_iff signed_take_bit_def)
+  finally show ?thesis .
+qed
+
+end
+
+
+subsection \<open>Conversions including casts\<close>
+
+subsubsection \<open>Generic unsigned conversion\<close>
+
+context semiring_bits
+begin
+
+lemma bit_unsigned_iff:
+  \<open>bit (unsigned w) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> bit w n\<close>
+  for w :: \<open>'b::len word\<close>
+  by (transfer fixing: bit) (simp add: bit_of_nat_iff bit_nat_iff bit_take_bit_iff)
+
+end
+
+context semiring_bit_shifts
+begin
+
+lemma unsigned_push_bit_eq:
+  \<open>unsigned (push_bit n w) = take_bit LENGTH('b) (push_bit n (unsigned w))\<close>
+  for w :: \<open>'b::len word\<close>
+proof (rule bit_eqI)
+  fix m
+  assume \<open>2 ^ m \<noteq> 0\<close>
+  show \<open>bit (unsigned (push_bit n w)) m = bit (take_bit LENGTH('b) (push_bit n (unsigned w))) m\<close>
+  proof (cases \<open>n \<le> m\<close>)
+    case True
+    with \<open>2 ^ m \<noteq> 0\<close> have \<open>2 ^ (m - n) \<noteq> 0\<close>
+      by (metis (full_types) diff_add exp_add_not_zero_imp)
+    with True show ?thesis
+      by (simp add: bit_unsigned_iff bit_push_bit_iff Parity.bit_push_bit_iff bit_take_bit_iff not_le exp_eq_zero_iff ac_simps)
+  next
+    case False
+    then show ?thesis
+      by (simp add: not_le bit_unsigned_iff bit_push_bit_iff Parity.bit_push_bit_iff bit_take_bit_iff)
+  qed
+qed
+
+lemma unsigned_take_bit_eq:
+  \<open>unsigned (take_bit n w) = take_bit n (unsigned w)\<close>
+  for w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff bit_take_bit_iff Parity.bit_take_bit_iff)
+
+end
+
+context unique_euclidean_semiring_with_bit_shifts
+begin
+
+lemma unsigned_drop_bit_eq:
+  \<open>unsigned (drop_bit n w) = drop_bit n (take_bit LENGTH('b) (unsigned w))\<close>
+  for w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (auto simp add: bit_unsigned_iff bit_take_bit_iff bit_drop_bit_eq Parity.bit_drop_bit_eq dest: bit_imp_le_length)
+
+end
+
+context semiring_bit_operations
+begin
+
+lemma unsigned_and_eq:
+  \<open>unsigned (v AND w) = unsigned v AND unsigned w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff bit_and_iff Bit_Operations.bit_and_iff)
+
+lemma unsigned_or_eq:
+  \<open>unsigned (v OR w) = unsigned v OR unsigned w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff bit_or_iff Bit_Operations.bit_or_iff)
+
+lemma unsigned_xor_eq:
+  \<open>unsigned (v XOR w) = unsigned v XOR unsigned w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff bit_xor_iff Bit_Operations.bit_xor_iff)
+
+end
+
+context ring_bit_operations
+begin
+
+lemma unsigned_not_eq:
+  \<open>unsigned (NOT w) = take_bit LENGTH('b) (NOT (unsigned w))\<close>
+  for w :: \<open>'b::len word\<close>
+  by (rule bit_eqI)
+    (simp add: bit_unsigned_iff bit_take_bit_iff bit_not_iff Bit_Operations.bit_not_iff exp_eq_zero_iff not_le)
+
+end
+
+context unique_euclidean_semiring_numeral
+begin
+
+lemma unsigned_greater_eq [simp]:
+  \<open>0 \<le> unsigned w\<close> for w :: \<open>'b::len word\<close>
+  by (transfer fixing: less_eq) simp
+
+lemma unsigned_less [simp]:
+  \<open>unsigned w < 2 ^ LENGTH('b)\<close> for w :: \<open>'b::len word\<close>
+  by (transfer fixing: less) simp
+
+end
+
+context linordered_semidom
+begin
+
+lemma word_less_eq_iff_unsigned:
+  "a \<le> b \<longleftrightarrow> unsigned a \<le> unsigned b"
+  by (transfer fixing: less_eq) (simp add: nat_le_eq_zle)
+
+lemma word_less_iff_unsigned:
+  "a < b \<longleftrightarrow> unsigned a < unsigned b"
+  by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF take_bit_nonnegative])
+
+end
+
+
+subsubsection \<open>Generic signed conversion\<close>
+
+context ring_bit_operations
+begin
+
+lemma bit_signed_iff:
+  \<open>bit (signed w) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> bit w (min (LENGTH('b) - Suc 0) n)\<close>
+  for w :: \<open>'b::len word\<close>
+  by (transfer fixing: bit)
+    (auto simp add: bit_of_int_iff Bit_Operations.bit_signed_take_bit_iff min_def)
+
+lemma signed_push_bit_eq:
+  \<open>signed (push_bit n w) = signed_take_bit (LENGTH('b) - Suc 0) (push_bit n (signed w :: 'a))\<close>
+  for w :: \<open>'b::len word\<close>
+proof (rule bit_eqI)
+  fix m
+  assume \<open>2 ^ m \<noteq> 0\<close>
+  define q where \<open>q = LENGTH('b) - Suc 0\<close>
+  then have *: \<open>LENGTH('b) = Suc q\<close>
+    by simp
+  show \<open>bit (signed (push_bit n w)) m \<longleftrightarrow>
+    bit (signed_take_bit (LENGTH('b) - Suc 0) (push_bit n (signed w :: 'a))) m\<close>
+  proof (cases \<open>q \<le> m\<close>)
+    case True
+    moreover define r where \<open>r = m - q\<close>
+    ultimately have \<open>m = q + r\<close>
+      by simp
+    moreover from \<open>m = q + r\<close> \<open>2 ^ m \<noteq> 0\<close> have \<open>2 ^ q \<noteq> 0\<close> \<open>2 ^ r \<noteq> 0\<close>
+      using exp_add_not_zero_imp_left [of q r] exp_add_not_zero_imp_right [of q r]
+      by simp_all
+    moreover from \<open>2 ^ q \<noteq> 0\<close> have \<open>2 ^ (q - n) \<noteq> 0\<close>
+      by (rule exp_not_zero_imp_exp_diff_not_zero)
+    ultimately show ?thesis
+      by (auto simp add: bit_signed_iff bit_signed_take_bit_iff bit_push_bit_iff Parity.bit_push_bit_iff
+      min_def * exp_eq_zero_iff le_diff_conv2)
+  next
+    case False
+    then show ?thesis
+      using exp_not_zero_imp_exp_diff_not_zero [of m n]
+      by (auto simp add: bit_signed_iff bit_signed_take_bit_iff bit_push_bit_iff Parity.bit_push_bit_iff
+      min_def not_le not_less * le_diff_conv2 less_diff_conv2 Parity.exp_eq_0_imp_not_bit exp_eq_0_imp_not_bit
+      exp_eq_zero_iff)
+  qed
+qed
+
+lemma signed_take_bit_eq:
+  \<open>signed (take_bit n w) = (if n < LENGTH('b) then take_bit n (signed w) else signed w)\<close>
+  for w :: \<open>'b::len word\<close>
+  by (transfer fixing: take_bit; cases \<open>LENGTH('b)\<close>)
+    (auto simp add: Bit_Operations.signed_take_bit_take_bit Bit_Operations.take_bit_signed_take_bit take_bit_of_int min_def less_Suc_eq)
+
+lemma signed_not_eq:
+  \<open>signed (NOT w) = signed_take_bit LENGTH('b) (NOT (signed w))\<close>
+  for w :: \<open>'b::len word\<close>
+proof (rule bit_eqI)
+  fix n
+  assume \<open>2 ^ n \<noteq> 0\<close>
+  define q where \<open>q = LENGTH('b) - Suc 0\<close>
+  then have *: \<open>LENGTH('b) = Suc q\<close>
+    by simp
+  show \<open>bit (signed (NOT w)) n \<longleftrightarrow>
+    bit (signed_take_bit LENGTH('b) (NOT (signed w))) n\<close>
+  proof (cases \<open>q < n\<close>)
+    case True
+    moreover define r where \<open>r = n - Suc q\<close>
+    ultimately have \<open>n = r + Suc q\<close>
+      by simp
+    moreover from \<open>2 ^ n \<noteq> 0\<close> \<open>n = r + Suc q\<close>
+      have \<open>2 ^ Suc q \<noteq> 0\<close>
+      using exp_add_not_zero_imp_right by blast 
+    ultimately show ?thesis
+      by (simp add: * bit_signed_iff bit_not_iff bit_signed_take_bit_iff Bit_Operations.bit_not_iff min_def
+        exp_eq_zero_iff)
+  next
+    case False
+    then show ?thesis
+      by (auto simp add: * bit_signed_iff bit_not_iff bit_signed_take_bit_iff Bit_Operations.bit_not_iff min_def
+        exp_eq_zero_iff)
+  qed
+qed
+
+lemma signed_and_eq:
+  \<open>signed (v AND w) = signed v AND signed w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_signed_iff bit_and_iff Bit_Operations.bit_and_iff)
+
+lemma signed_or_eq:
+  \<open>signed (v OR w) = signed v OR signed w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_signed_iff bit_or_iff Bit_Operations.bit_or_iff)
+
+lemma signed_xor_eq:
+  \<open>signed (v XOR w) = signed v XOR signed w\<close>
+  for v w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_signed_iff bit_xor_iff Bit_Operations.bit_xor_iff)
+
+end
+
+
+subsubsection \<open>More\<close>
+
+lemma sint_greater_eq:
+  \<open>- (2 ^ (LENGTH('a) - Suc 0)) \<le> sint w\<close> for w :: \<open>'a::len word\<close>
+proof (cases \<open>bit w (LENGTH('a) - Suc 0)\<close>)
+  case True
+  then show ?thesis
+    by transfer (simp add: signed_take_bit_eq_if_negative minus_exp_eq_not_mask or_greater_eq ac_simps)
+next
+  have *: \<open>- (2 ^ (LENGTH('a) - Suc 0)) \<le> (0::int)\<close>
+    by simp
+  case False
+  then show ?thesis
+    by transfer (auto simp add: signed_take_bit_eq intro: order_trans *)
+qed
+
+lemma sint_less:
+  \<open>sint w < 2 ^ (LENGTH('a) - Suc 0)\<close> for w :: \<open>'a::len word\<close>
+  by (cases \<open>bit w (LENGTH('a) - Suc 0)\<close>; transfer)
+    (simp_all add: signed_take_bit_eq signed_take_bit_def not_eq_complement mask_eq_exp_minus_1 OR_upper)
+
+lemma unat_div_distrib:
+  \<open>unat (v div w) = unat v div unat w\<close>
+proof transfer
+  fix k l
+  have \<open>nat (take_bit LENGTH('a) k) div nat (take_bit LENGTH('a) l) \<le> nat (take_bit LENGTH('a) k)\<close>
+    by (rule div_le_dividend)
+  also have \<open>nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\<close>
+    by (simp add: nat_less_iff)
+  finally show \<open>(nat \<circ> take_bit LENGTH('a)) (take_bit LENGTH('a) k div take_bit LENGTH('a) l) =
+    (nat \<circ> take_bit LENGTH('a)) k div (nat \<circ> take_bit LENGTH('a)) l\<close>
+    by (simp add: nat_take_bit_eq div_int_pos_iff nat_div_distrib take_bit_nat_eq_self_iff)
+qed
+
+lemma unat_mod_distrib:
+  \<open>unat (v mod w) = unat v mod unat w\<close>
+proof transfer
+  fix k l
+  have \<open>nat (take_bit LENGTH('a) k) mod nat (take_bit LENGTH('a) l) \<le> nat (take_bit LENGTH('a) k)\<close>
+    by (rule mod_less_eq_dividend)
+  also have \<open>nat (take_bit LENGTH('a) k) < 2 ^ LENGTH('a)\<close>
+    by (simp add: nat_less_iff)
+  finally show \<open>(nat \<circ> take_bit LENGTH('a)) (take_bit LENGTH('a) k mod take_bit LENGTH('a) l) =
+    (nat \<circ> take_bit LENGTH('a)) k mod (nat \<circ> take_bit LENGTH('a)) l\<close>
+    by (simp add: nat_take_bit_eq mod_int_pos_iff less_le nat_mod_distrib take_bit_nat_eq_self_iff)
+qed
+
+lemma uint_div_distrib:
+  \<open>uint (v div w) = uint v div uint w\<close>
+proof -
+  have \<open>int (unat (v div w)) = int (unat v div unat w)\<close>
+    by (simp add: unat_div_distrib)
+  then show ?thesis
+    by (simp add: of_nat_div)
+qed
+
+lemma unat_drop_bit_eq:
+  \<open>unat (drop_bit n w) = drop_bit n (unat w)\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff bit_drop_bit_eq)
+
+lemma uint_mod_distrib:
+  \<open>uint (v mod w) = uint v mod uint w\<close>
+proof -
+  have \<open>int (unat (v mod w)) = int (unat v mod unat w)\<close>
+    by (simp add: unat_mod_distrib)
+  then show ?thesis
+    by (simp add: of_nat_mod)
+qed
+
+context semiring_bit_shifts
+begin
+
+lemma unsigned_ucast_eq:
+  \<open>unsigned (ucast w :: 'c::len word) = take_bit LENGTH('c) (unsigned w)\<close>
+  for w :: \<open>'b::len word\<close>
+  by (rule bit_eqI) (simp add: bit_unsigned_iff Word.bit_unsigned_iff bit_take_bit_iff exp_eq_zero_iff not_le)
+
+end
+
+context ring_bit_operations
+begin
+
+lemma signed_ucast_eq:
+  \<open>signed (ucast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (unsigned w)\<close>
+  for w :: \<open>'b::len word\<close>
+proof (rule bit_eqI)
+  fix n
+  assume \<open>2 ^ n \<noteq> 0\<close>
+  then have \<open>2 ^ (min (LENGTH('c) - Suc 0) n) \<noteq> 0\<close>
+    by (simp add: min_def)
+      (metis (mono_tags) diff_diff_cancel exp_not_zero_imp_exp_diff_not_zero)
+  then show \<open>bit (signed (ucast w :: 'c::len word)) n \<longleftrightarrow> bit (signed_take_bit (LENGTH('c) - Suc 0) (unsigned w)) n\<close>
+    by (simp add: bit_signed_iff bit_unsigned_iff Word.bit_unsigned_iff bit_signed_take_bit_iff exp_eq_zero_iff not_le)
+qed
+
+lemma signed_scast_eq:
+  \<open>signed (scast w :: 'c::len word) = signed_take_bit (LENGTH('c) - Suc 0) (signed w)\<close>
+  for w :: \<open>'b::len word\<close>
+proof (rule bit_eqI)
+  fix n
+  assume \<open>2 ^ n \<noteq> 0\<close>
+  then have \<open>2 ^ (min (LENGTH('c) - Suc 0) n) \<noteq> 0\<close>
+    by (simp add: min_def)
+      (metis (mono_tags) diff_diff_cancel exp_not_zero_imp_exp_diff_not_zero)
+  then show \<open>bit (signed (scast w :: 'c::len word)) n \<longleftrightarrow> bit (signed_take_bit (LENGTH('c) - Suc 0) (signed w)) n\<close>
+    by (simp add: bit_signed_iff bit_unsigned_iff Word.bit_signed_iff bit_signed_take_bit_iff exp_eq_zero_iff not_le)
+qed
+
+end
+
+lemma uint_nonnegative: "0 \<le> uint w"
+  by (fact unsigned_greater_eq)
+
+lemma uint_bounded: "uint w < 2 ^ LENGTH('a)"
+  for w :: "'a::len word"
+  by (fact unsigned_less)
+
+lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w"
+  for w :: "'a::len word"
+  by transfer (simp add: take_bit_eq_mod)
+
+lemma word_uint_eqI: "uint a = uint b \<Longrightarrow> a = b"
+  by (fact unsigned_word_eqI)
+
+lemma word_uint_eq_iff: "a = b \<longleftrightarrow> uint a = uint b"
+  by (fact word_eq_iff_unsigned)
+
+lemma uint_word_of_int_eq:
+  \<open>uint (word_of_int k :: 'a::len word) = take_bit LENGTH('a) k\<close>
+  by transfer rule
+
+lemma uint_word_of_int: "uint (word_of_int k :: 'a::len word) = k mod 2 ^ LENGTH('a)"
+  by (simp add: uint_word_of_int_eq take_bit_eq_mod)
+  
+lemma word_of_int_uint: "word_of_int (uint w) = w"
+  by transfer simp
+
+lemma word_div_def [code]:
+  "a div b = word_of_int (uint a div uint b)"
+  by transfer rule
+
+lemma word_mod_def [code]:
+  "a mod b = word_of_int (uint a mod uint b)"
+  by transfer rule
+
+lemma split_word_all: "(\<And>x::'a::len word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))"
+proof
+  fix x :: "'a word"
+  assume "\<And>x. PROP P (word_of_int x)"
+  then have "PROP P (word_of_int (uint x))" .
+  then show "PROP P x"
+    by (simp only: word_of_int_uint)
+qed
+
+lemma sint_uint:
+  \<open>sint w = signed_take_bit (LENGTH('a) - Suc 0) (uint w)\<close>
+  for w :: \<open>'a::len word\<close>
+  by (cases \<open>LENGTH('a)\<close>; transfer) (simp_all add: signed_take_bit_take_bit)
+
+lemma unat_eq_nat_uint:
+  \<open>unat w = nat (uint w)\<close>
+  by simp
+
+lemma ucast_eq:
+  \<open>ucast w = word_of_int (uint w)\<close>
+  by transfer simp
+
+lemma scast_eq:
+  \<open>scast w = word_of_int (sint w)\<close>
+  by transfer simp
+
+lemma uint_0_eq:
+  \<open>uint 0 = 0\<close>
+  by (fact unsigned_0)
+
+lemma uint_1_eq:
+  \<open>uint 1 = 1\<close>
+  by (fact unsigned_1)
+
+lemma word_m1_wi: "- 1 = word_of_int (- 1)"
+  by simp
+
+lemma uint_0_iff: "uint x = 0 \<longleftrightarrow> x = 0"
+  by (auto simp add: unsigned_word_eqI)
+
+lemma unat_0_iff: "unat x = 0 \<longleftrightarrow> x = 0"
+  by (auto simp add: unsigned_word_eqI)
+
+lemma unat_0: "unat 0 = 0"
+  by (fact unsigned_0)
+
+lemma unat_gt_0: "0 < unat x \<longleftrightarrow> x \<noteq> 0"
+  by (auto simp: unat_0_iff [symmetric])
+
+lemma ucast_0: "ucast 0 = 0"
+  by (fact unsigned_0)
+
+lemma sint_0: "sint 0 = 0"
+  by (fact signed_0)
+
+lemma scast_0: "scast 0 = 0"
+  by (fact signed_0)
+
+lemma sint_n1: "sint (- 1) = - 1"
+  by (fact signed_minus_1)
+
+lemma scast_n1: "scast (- 1) = - 1"
+  by (fact signed_minus_1)
+
+lemma uint_1: "uint (1::'a::len word) = 1"
+  by (fact uint_1_eq)
+
+lemma unat_1: "unat (1::'a::len word) = 1"
+  by (fact unsigned_1)
+
+lemma ucast_1: "ucast (1::'a::len word) = 1"
+  by (fact unsigned_1)
+
+instantiation word :: (len) size
+begin
+
+lift_definition size_word :: \<open>'a word \<Rightarrow> nat\<close>
+  is \<open>\<lambda>_. LENGTH('a)\<close> ..
+
+instance ..
+
+end
+
+lemma word_size [code]:
+  \<open>size w = LENGTH('a)\<close> for w :: \<open>'a::len word\<close>
+  by (fact size_word.rep_eq)
+
+lemma word_size_gt_0 [iff]: "0 < size w"
+  for w :: "'a::len word"
+  by (simp add: word_size)
+
+lemmas lens_gt_0 = word_size_gt_0 len_gt_0
+
+lemma lens_not_0 [iff]:
+  \<open>size w \<noteq> 0\<close> for  w :: \<open>'a::len word\<close>
+  by auto
+
+lift_definition source_size :: \<open>('a::len word \<Rightarrow> 'b) \<Rightarrow> nat\<close>
+  is \<open>\<lambda>_. LENGTH('a)\<close> .
+
+lift_definition target_size :: \<open>('a \<Rightarrow> 'b::len word) \<Rightarrow> nat\<close>
+  is \<open>\<lambda>_. LENGTH('b)\<close> ..
+
+lift_definition is_up :: \<open>('a::len word \<Rightarrow> 'b::len word) \<Rightarrow> bool\<close>
+  is \<open>\<lambda>_. LENGTH('a) \<le> LENGTH('b)\<close> ..
+
+lift_definition is_down :: \<open>('a::len word \<Rightarrow> 'b::len word) \<Rightarrow> bool\<close>
+  is \<open>\<lambda>_. LENGTH('a) \<ge> LENGTH('b)\<close> ..
+
+lemma is_up_eq:
+  \<open>is_up f \<longleftrightarrow> source_size f \<le> target_size f\<close>
+  for f :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  by (simp add: source_size.rep_eq target_size.rep_eq is_up.rep_eq)
+
+lemma is_down_eq:
+  \<open>is_down f \<longleftrightarrow> target_size f \<le> source_size f\<close>
+  for f :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  by (simp add: source_size.rep_eq target_size.rep_eq is_down.rep_eq)
+
+lift_definition word_int_case :: \<open>(int \<Rightarrow> 'b) \<Rightarrow> 'a::len word \<Rightarrow> 'b\<close>
+  is \<open>\<lambda>f. f \<circ> take_bit LENGTH('a)\<close> by simp
+
+lemma word_int_case_eq_uint [code]:
+  \<open>word_int_case f w = f (uint w)\<close>
+  by transfer simp
+
+translations
+  "case x of XCONST of_int y \<Rightarrow> b" \<rightleftharpoons> "CONST word_int_case (\<lambda>y. b) x"
+  "case x of (XCONST of_int :: 'a) y \<Rightarrow> b" \<rightharpoonup> "CONST word_int_case (\<lambda>y. b) x"
+
+
+subsection \<open>Arithmetic operations\<close>
+
+text \<open>Legacy theorems:\<close>
+
+lemma word_add_def [code]:
+  "a + b = word_of_int (uint a + uint b)"
+  by transfer (simp add: take_bit_add)
+
+lemma word_sub_wi [code]:
+  "a - b = word_of_int (uint a - uint b)"
+  by transfer (simp add: take_bit_diff)
+
+lemma word_mult_def [code]:
+  "a * b = word_of_int (uint a * uint b)"
+  by transfer (simp add: take_bit_eq_mod mod_simps)
+
+lemma word_minus_def [code]:
+  "- a = word_of_int (- uint a)"
+  by transfer (simp add: take_bit_minus)
+
+lemma word_0_wi:
+  "0 = word_of_int 0"
+  by transfer simp
+
+lemma word_1_wi:
+  "1 = word_of_int 1"
+  by transfer simp
+
+lift_definition word_succ :: "'a::len word \<Rightarrow> 'a word" is "\<lambda>x. x + 1"
+  by (auto simp add: take_bit_eq_mod intro: mod_add_cong)
+
+lift_definition word_pred :: "'a::len word \<Rightarrow> 'a word" is "\<lambda>x. x - 1"
+  by (auto simp add: take_bit_eq_mod intro: mod_diff_cong)
+
+lemma word_succ_alt [code]:
+  "word_succ a = word_of_int (uint a + 1)"
+  by transfer (simp add: take_bit_eq_mod mod_simps)
+
+lemma word_pred_alt [code]:
+  "word_pred a = word_of_int (uint a - 1)"
+  by transfer (simp add: take_bit_eq_mod mod_simps)
+
+lemmas word_arith_wis = 
+  word_add_def word_sub_wi word_mult_def
+  word_minus_def word_succ_alt word_pred_alt
+  word_0_wi word_1_wi
+
+lemma wi_homs:
+  shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)"
+    and wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)"
+    and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)"
+    and wi_hom_neg: "- word_of_int a = word_of_int (- a)"
+    and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)"
+    and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)"
+  by (transfer, simp)+
+
+lemmas wi_hom_syms = wi_homs [symmetric]
+
+lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi
+
+lemmas word_of_int_hom_syms = word_of_int_homs [symmetric]
+
+lemma double_eq_zero_iff:
+  \<open>2 * a = 0 \<longleftrightarrow> a = 0 \<or> a = 2 ^ (LENGTH('a) - Suc 0)\<close>
+  for a :: \<open>'a::len word\<close>
+proof -
+  define n where \<open>n = LENGTH('a) - Suc 0\<close>
+  then have *: \<open>LENGTH('a) = Suc n\<close>
+    by simp
+  have \<open>a = 0\<close> if \<open>2 * a = 0\<close> and \<open>a \<noteq> 2 ^ (LENGTH('a) - Suc 0)\<close>
+    using that by transfer
+      (auto simp add: take_bit_eq_0_iff take_bit_eq_mod *)
+  moreover have \<open>2 ^ LENGTH('a) = (0 :: 'a word)\<close>
+    by transfer simp
+  then have \<open>2 * 2 ^ (LENGTH('a) - Suc 0) = (0 :: 'a word)\<close>
+    by (simp add: *)
+  ultimately show ?thesis
+    by auto
+qed
+
+
+subsection \<open>Ordering\<close>
+
+lift_definition word_sle :: \<open>'a::len word \<Rightarrow> 'a word \<Rightarrow> bool\<close>
+  is \<open>\<lambda>k l. signed_take_bit (LENGTH('a) - Suc 0) k \<le> signed_take_bit (LENGTH('a) - Suc 0) l\<close>
+  by (simp flip: signed_take_bit_decr_length_iff)
+
+lift_definition word_sless :: \<open>'a::len word \<Rightarrow> 'a word \<Rightarrow> bool\<close>
+  is \<open>\<lambda>k l. signed_take_bit (LENGTH('a) - Suc 0) k < signed_take_bit (LENGTH('a) - Suc 0) l\<close>
+  by (simp flip: signed_take_bit_decr_length_iff)
+
+notation
+  word_sle    ("'(\<le>s')") and
+  word_sle    ("(_/ \<le>s _)"  [51, 51] 50) and
+  word_sless  ("'(<s')") and
+  word_sless  ("(_/ <s _)"  [51, 51] 50)
+
+notation (input)
+  word_sle    ("(_/ <=s _)"  [51, 51] 50)
+
+lemma word_sle_eq [code]:
+  \<open>a <=s b \<longleftrightarrow> sint a \<le> sint b\<close>
+  by transfer simp
+
+lemma [code]:
+  \<open>a <s b \<longleftrightarrow> sint a < sint b\<close>
+  by transfer simp
+
+lemma signed_ordering: \<open>ordering word_sle word_sless\<close>
+  apply (standard; transfer)
+  apply simp_all
+  using signed_take_bit_decr_length_iff apply force
+  using signed_take_bit_decr_length_iff apply force
+  done
+
+lemma signed_linorder: \<open>class.linorder word_sle word_sless\<close>
+  by (standard; transfer) (auto simp add: signed_take_bit_decr_length_iff)
+
+interpretation signed: linorder word_sle word_sless
+  by (fact signed_linorder)
+
+lemma word_sless_eq:
+  \<open>x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y\<close>
+  by (fact signed.less_le)
+
+lemma word_less_alt: "a < b \<longleftrightarrow> uint a < uint b"
+  by (fact word_less_def)
+
+lemma word_zero_le [simp]: "0 \<le> y"
+  for y :: "'a::len word"
+  by (fact word_coorder.extremum)
+
+lemma word_m1_ge [simp] : "word_pred 0 \<ge> y" (* FIXME: delete *)
+  by transfer (simp add: take_bit_minus_one_eq_mask mask_eq_exp_minus_1 )
+
+lemma word_n1_ge [simp]: "y \<le> -1"
+  for y :: "'a::len word"
+  by (fact word_order.extremum)
+
+lemmas word_not_simps [simp] =
+  word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD]
+
+lemma word_gt_0: "0 < y \<longleftrightarrow> 0 \<noteq> y"
+  for y :: "'a::len word"
+  by (simp add: less_le)
+
+lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y
+
+lemma word_sless_alt: "a <s b \<longleftrightarrow> sint a < sint b"
+  by transfer simp
+
+lemma word_le_nat_alt: "a \<le> b \<longleftrightarrow> unat a \<le> unat b"
+  by transfer (simp add: nat_le_eq_zle)
+
+lemma word_less_nat_alt: "a < b \<longleftrightarrow> unat a < unat b"
+  by transfer (auto simp add: less_le [of 0])
+
+lemmas unat_mono = word_less_nat_alt [THEN iffD1]
+
+instance word :: (len) wellorder
+proof
+  fix P :: "'a word \<Rightarrow> bool" and a
+  assume *: "(\<And>b. (\<And>a. a < b \<Longrightarrow> P a) \<Longrightarrow> P b)"
+  have "wf (measure unat)" ..
+  moreover have "{(a, b :: ('a::len) word). a < b} \<subseteq> measure unat"
+    by (auto simp add: word_less_nat_alt)
+  ultimately have "wf {(a, b :: ('a::len) word). a < b}"
+    by (rule wf_subset)
+  then show "P a" using *
+    by induction blast
+qed
+
+lemma wi_less:
+  "(word_of_int n < (word_of_int m :: 'a::len word)) =
+    (n mod 2 ^ LENGTH('a) < m mod 2 ^ LENGTH('a))"
+  by transfer (simp add: take_bit_eq_mod)
+
+lemma wi_le:
+  "(word_of_int n \<le> (word_of_int m :: 'a::len word)) =
+    (n mod 2 ^ LENGTH('a) \<le> m mod 2 ^ LENGTH('a))"
+  by transfer (simp add: take_bit_eq_mod)
+
+
+subsection \<open>Bit-wise operations\<close>
+
+lemma uint_take_bit_eq:
+  \<open>uint (take_bit n w) = take_bit n (uint w)\<close>
+  by transfer (simp add: ac_simps)
+
+lemma take_bit_word_eq_self:
+  \<open>take_bit n w = w\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close>
+  using that by transfer simp
+
+lemma take_bit_length_eq [simp]:
+  \<open>take_bit LENGTH('a) w = w\<close> for w :: \<open>'a::len word\<close>
+  by (rule take_bit_word_eq_self) simp
+
+lemma bit_word_of_int_iff:
+  \<open>bit (word_of_int k :: 'a::len word) n \<longleftrightarrow> n < LENGTH('a) \<and> bit k n\<close>
+  by transfer rule
+
+lemma bit_uint_iff:
+  \<open>bit (uint w) n \<longleftrightarrow> n < LENGTH('a) \<and> bit w n\<close>
+    for w :: \<open>'a::len word\<close>
+  by transfer (simp add: bit_take_bit_iff)
+
+lemma bit_sint_iff:
+  \<open>bit (sint w) n \<longleftrightarrow> n \<ge> LENGTH('a) \<and> bit w (LENGTH('a) - 1) \<or> bit w n\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (auto simp add: bit_signed_take_bit_iff min_def le_less not_less)
+
+lemma bit_word_ucast_iff:
+  \<open>bit (ucast w :: 'b::len word) n \<longleftrightarrow> n < LENGTH('a) \<and> n < LENGTH('b) \<and> bit w n\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (simp add: bit_take_bit_iff ac_simps)
+
+lemma bit_word_scast_iff:
+  \<open>bit (scast w :: 'b::len word) n \<longleftrightarrow>
+    n < LENGTH('b) \<and> (bit w n \<or> LENGTH('a) \<le> n \<and> bit w (LENGTH('a) - Suc 0))\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (auto simp add: bit_signed_take_bit_iff le_less min_def)
+
+lift_definition shiftl1 :: \<open>'a::len word \<Rightarrow> 'a word\<close>
+  is \<open>(*) 2\<close>
+  by (auto simp add: take_bit_eq_mod intro: mod_mult_cong)
+
+lemma shiftl1_eq:
+  \<open>shiftl1 w = word_of_int (2 * uint w)\<close>
+  by transfer (simp add: take_bit_eq_mod mod_simps)
+
+lemma shiftl1_eq_mult_2:
+  \<open>shiftl1 = (*) 2\<close>
+  by (rule ext, transfer) simp
+
+lemma bit_shiftl1_iff:
+  \<open>bit (shiftl1 w) n \<longleftrightarrow> 0 < n \<and> n < LENGTH('a) \<and> bit w (n - 1)\<close>
+    for w :: \<open>'a::len word\<close>
+  by (simp add: shiftl1_eq_mult_2 bit_double_iff exp_eq_zero_iff not_le) (simp add: ac_simps)
+
+lift_definition shiftr1 :: \<open>'a::len word \<Rightarrow> 'a word\<close>
+  \<comment> \<open>shift right as unsigned or as signed, ie logical or arithmetic\<close>
+  is \<open>\<lambda>k. take_bit LENGTH('a) k div 2\<close> 
+  by simp
+
+lemma shiftr1_eq_div_2:
+  \<open>shiftr1 w = w div 2\<close>
+  by transfer simp
+
+lemma bit_shiftr1_iff:
+  \<open>bit (shiftr1 w) n \<longleftrightarrow> bit w (Suc n)\<close>
+  by transfer (auto simp flip: bit_Suc simp add: bit_take_bit_iff)
+
+lemma shiftr1_eq:
+  \<open>shiftr1 w = word_of_int (uint w div 2)\<close>
+  by transfer simp
+
+lemma bit_word_iff_drop_bit_and [code]:
+  \<open>bit a n \<longleftrightarrow> drop_bit n a AND 1 = 1\<close> for a :: \<open>'a::len word\<close>
+  by (simp add: bit_iff_odd_drop_bit odd_iff_mod_2_eq_one and_one_eq)
+
+lemma
+  word_not_def: "NOT (a::'a::len word) = word_of_int (NOT (uint a))"
+    and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)"
+    and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)"
+    and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)"
+  by (transfer, simp add: take_bit_not_take_bit)+
+
+lift_definition setBit :: \<open>'a::len word \<Rightarrow> nat \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>k n. set_bit n k\<close>
+  by (simp add: take_bit_set_bit_eq)
+
+lemma set_Bit_eq:
+  \<open>setBit w n = set_bit n w\<close>
+  by transfer simp
+
+lemma bit_setBit_iff:
+  \<open>bit (setBit w m) n \<longleftrightarrow> (m = n \<and> n < LENGTH('a) \<or> bit w n)\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (auto simp add: bit_set_bit_iff)
+
+lift_definition clearBit :: \<open>'a::len word \<Rightarrow> nat \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>k n. unset_bit n k\<close>
+  by (simp add: take_bit_unset_bit_eq)
+
+lemma clear_Bit_eq:
+  \<open>clearBit w n = unset_bit n w\<close>
+  by transfer simp
+
+lemma bit_clearBit_iff:
+  \<open>bit (clearBit w m) n \<longleftrightarrow> m \<noteq> n \<and> bit w n\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer (auto simp add: bit_unset_bit_iff)
+
+definition even_word :: \<open>'a::len word \<Rightarrow> bool\<close>
+  where [code_abbrev]: \<open>even_word = even\<close>
+
+lemma even_word_iff [code]:
+  \<open>even_word a \<longleftrightarrow> a AND 1 = 0\<close>
+  by (simp add: and_one_eq even_iff_mod_2_eq_zero even_word_def)
+
+lemma map_bit_range_eq_if_take_bit_eq:
+  \<open>map (bit k) [0..<n] = map (bit l) [0..<n]\<close>
+  if \<open>take_bit n k = take_bit n l\<close> for k l :: int
+using that proof (induction n arbitrary: k l)
+  case 0
+  then show ?case
+    by simp
+next
+  case (Suc n)
+  from Suc.prems have \<open>take_bit n (k div 2) = take_bit n (l div 2)\<close>
+    by (simp add: take_bit_Suc)
+  then have \<open>map (bit (k div 2)) [0..<n] = map (bit (l div 2)) [0..<n]\<close>
+    by (rule Suc.IH)
+  moreover have \<open>bit (r div 2) = bit r \<circ> Suc\<close> for r :: int
+    by (simp add: fun_eq_iff bit_Suc)
+  moreover from Suc.prems have \<open>even k \<longleftrightarrow> even l\<close>
+    by (auto simp add: take_bit_Suc elim!: evenE oddE) arith+
+  ultimately show ?case
+    by (simp only: map_Suc_upt upt_conv_Cons flip: list.map_comp) simp
+qed
+
+lemma
+  take_bit_word_Bit0_eq [simp]: \<open>take_bit (numeral n) (numeral (num.Bit0 m) :: 'a::len word)
+    = 2 * take_bit (pred_numeral n) (numeral m)\<close> (is ?P)
+  and take_bit_word_Bit1_eq [simp]: \<open>take_bit (numeral n) (numeral (num.Bit1 m) :: 'a::len word)
+    = 1 + 2 * take_bit (pred_numeral n) (numeral m)\<close> (is ?Q)
+  and take_bit_word_minus_Bit0_eq [simp]: \<open>take_bit (numeral n) (- numeral (num.Bit0 m) :: 'a::len word)
+    = 2 * take_bit (pred_numeral n) (- numeral m)\<close> (is ?R)
+  and take_bit_word_minus_Bit1_eq [simp]: \<open>take_bit (numeral n) (- numeral (num.Bit1 m) :: 'a::len word)
+    = 1 + 2 * take_bit (pred_numeral n) (- numeral (Num.inc m))\<close> (is ?S)
+proof -
+  define w :: \<open>'a::len word\<close>
+    where \<open>w = numeral m\<close>
+  moreover define q :: nat
+    where \<open>q = pred_numeral n\<close>
+  ultimately have num:
+    \<open>numeral m = w\<close>
+    \<open>numeral (num.Bit0 m) = 2 * w\<close>
+    \<open>numeral (num.Bit1 m) = 1 + 2 * w\<close>
+    \<open>numeral (Num.inc m) = 1 + w\<close>
+    \<open>pred_numeral n = q\<close>
+    \<open>numeral n = Suc q\<close>
+    by (simp_all only: w_def q_def numeral_Bit0 [of m] numeral_Bit1 [of m] ac_simps
+      numeral_inc numeral_eq_Suc flip: mult_2)
+  have even: \<open>take_bit (Suc q) (2 * w) = 2 * take_bit q w\<close> for w :: \<open>'a::len word\<close>
+    by (rule bit_word_eqI)
+      (auto simp add: bit_take_bit_iff bit_double_iff)
+  have odd: \<open>take_bit (Suc q) (1 + 2 * w) = 1 + 2 * take_bit q w\<close> for w :: \<open>'a::len word\<close>
+    by (rule bit_eqI)
+      (auto simp add: bit_take_bit_iff bit_double_iff even_bit_succ_iff)
+  show ?P
+    using even [of w] by (simp add: num)
+  show ?Q
+    using odd [of w] by (simp add: num)
+  show ?R
+    using even [of \<open>- w\<close>] by (simp add: num)
+  show ?S
+    using odd [of \<open>- (1 + w)\<close>] by (simp add: num)
+qed
+
+
+subsection \<open>More shift operations\<close>
+
+lift_definition signed_drop_bit :: \<open>nat \<Rightarrow> 'a word \<Rightarrow> 'a::len word\<close>
+  is \<open>\<lambda>n. drop_bit n \<circ> signed_take_bit (LENGTH('a) - Suc 0)\<close>
+  using signed_take_bit_decr_length_iff
+  by (simp add: take_bit_drop_bit) force
+
+lemma bit_signed_drop_bit_iff:
+  \<open>bit (signed_drop_bit m w) n \<longleftrightarrow> bit w (if LENGTH('a) - m \<le> n \<and> n < LENGTH('a) then LENGTH('a) - 1 else m + n)\<close>
+  for w :: \<open>'a::len word\<close>
+  apply transfer
+  apply (auto simp add: bit_drop_bit_eq bit_signed_take_bit_iff not_le min_def)
+   apply (metis add.commute le_antisym less_diff_conv less_eq_decr_length_iff)
+  apply (metis le_antisym less_eq_decr_length_iff)
+  done
+
+lemma [code]:
+  \<open>Word.the_int (signed_drop_bit n w) = take_bit LENGTH('a) (drop_bit n (Word.the_signed_int w))\<close>
+  for w :: \<open>'a::len word\<close>
+  by transfer simp
+
+lemma signed_drop_bit_signed_drop_bit [simp]:
+  \<open>signed_drop_bit m (signed_drop_bit n w) = signed_drop_bit (m + n) w\<close>
+  for w :: \<open>'a::len word\<close>
+  apply (cases \<open>LENGTH('a)\<close>)
+   apply simp_all
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_signed_drop_bit_iff not_le less_diff_conv ac_simps)
+  done
+
+lemma signed_drop_bit_0 [simp]:
+  \<open>signed_drop_bit 0 w = w\<close>
+  by transfer (simp add: take_bit_signed_take_bit)
+
+lemma sint_signed_drop_bit_eq:
+  \<open>sint (signed_drop_bit n w) = drop_bit n (sint w)\<close>
+  apply (cases \<open>LENGTH('a)\<close>; cases n)
+     apply simp_all
+  apply (rule bit_eqI)
+  apply (auto simp add: bit_sint_iff bit_drop_bit_eq bit_signed_drop_bit_iff dest: bit_imp_le_length)
+  done
+
+lift_definition sshiftr1 :: \<open>'a::len word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>k. take_bit LENGTH('a) (signed_take_bit (LENGTH('a) - Suc 0) k div 2)\<close>
+  by (simp flip: signed_take_bit_decr_length_iff)
+
+lift_definition bshiftr1 :: \<open>bool \<Rightarrow> 'a::len word \<Rightarrow> 'a word\<close>
+  is \<open>\<lambda>b k. take_bit LENGTH('a) k div 2 + of_bool b * 2 ^ (LENGTH('a) - Suc 0)\<close>
+  by (fact arg_cong)
+
+lemma sshiftr1_eq_signed_drop_bit_Suc_0:
+  \<open>sshiftr1 = signed_drop_bit (Suc 0)\<close>
+  by (rule ext) (transfer, simp add: drop_bit_Suc)
+
+lemma sshiftr1_eq:
+  \<open>sshiftr1 w = word_of_int (sint w div 2)\<close>
+  by transfer simp
+
+
+subsection \<open>Rotation\<close>
+
+lift_definition word_rotr :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close>
+  is \<open>\<lambda>n k. concat_bit (LENGTH('a) - n mod LENGTH('a))
+    (drop_bit (n mod LENGTH('a)) (take_bit LENGTH('a) k))
+    (take_bit (n mod LENGTH('a)) k)\<close>
+  subgoal for n k l
+    apply (simp add: concat_bit_def nat_le_iff less_imp_le
+      take_bit_tightened [of \<open>LENGTH('a)\<close> k l \<open>n mod LENGTH('a::len)\<close>])
+    done
+  done
+
+lift_definition word_rotl :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close>
+  is \<open>\<lambda>n k. concat_bit (n mod LENGTH('a))
+    (drop_bit (LENGTH('a) - n mod LENGTH('a)) (take_bit LENGTH('a) k))
+    (take_bit (LENGTH('a) - n mod LENGTH('a)) k)\<close>
+  subgoal for n k l
+    apply (simp add: concat_bit_def nat_le_iff less_imp_le
+      take_bit_tightened [of \<open>LENGTH('a)\<close> k l \<open>LENGTH('a) - n mod LENGTH('a::len)\<close>])
+    done
+  done
+
+lift_definition word_roti :: \<open>int \<Rightarrow> 'a::len word \<Rightarrow> 'a::len word\<close>
+  is \<open>\<lambda>r k. concat_bit (LENGTH('a) - nat (r mod int LENGTH('a)))
+    (drop_bit (nat (r mod int LENGTH('a))) (take_bit LENGTH('a) k))
+    (take_bit (nat (r mod int LENGTH('a))) k)\<close>
+  subgoal for r k l
+    apply (simp add: concat_bit_def nat_le_iff less_imp_le
+      take_bit_tightened [of \<open>LENGTH('a)\<close> k l \<open>nat (r mod int LENGTH('a::len))\<close>])
+    done
+  done
+
+lemma word_rotl_eq_word_rotr [code]:
+  \<open>word_rotl n = (word_rotr (LENGTH('a) - n mod LENGTH('a)) :: 'a::len word \<Rightarrow> 'a word)\<close>
+  by (rule ext, cases \<open>n mod LENGTH('a) = 0\<close>; transfer) simp_all
+
+lemma word_roti_eq_word_rotr_word_rotl [code]:
+  \<open>word_roti i w =
+    (if i \<ge> 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)\<close>
+proof (cases \<open>i \<ge> 0\<close>)
+  case True
+  moreover define n where \<open>n = nat i\<close>
+  ultimately have \<open>i = int n\<close>
+    by simp
+  moreover have \<open>word_roti (int n) = (word_rotr n :: _ \<Rightarrow> 'a word)\<close>
+    by (rule ext, transfer) (simp add: nat_mod_distrib)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  moreover define n where \<open>n = nat (- i)\<close>
+  ultimately have \<open>i = - int n\<close> \<open>n > 0\<close>
+    by simp_all
+  moreover have \<open>word_roti (- int n) = (word_rotl n :: _ \<Rightarrow> 'a word)\<close>
+    by (rule ext, transfer)
+      (simp add: zmod_zminus1_eq_if flip: of_nat_mod of_nat_diff)
+  ultimately show ?thesis
+    by simp
+qed
+
+lemma bit_word_rotr_iff:
+  \<open>bit (word_rotr m w) n \<longleftrightarrow>
+    n < LENGTH('a) \<and> bit w ((n + m) mod LENGTH('a))\<close>
+  for w :: \<open>'a::len word\<close>
+proof transfer
+  fix k :: int and m n :: nat
+  define q where \<open>q = m mod LENGTH('a)\<close>
+  have \<open>q < LENGTH('a)\<close> 
+    by (simp add: q_def)
+  then have \<open>q \<le> LENGTH('a)\<close>
+    by simp
+  have \<open>m mod LENGTH('a) = q\<close>
+    by (simp add: q_def)
+  moreover have \<open>(n + m) mod LENGTH('a) = (n + q) mod LENGTH('a)\<close>
+    by (subst mod_add_right_eq [symmetric]) (simp add: \<open>m mod LENGTH('a) = q\<close>)
+  moreover have \<open>n < LENGTH('a) \<and>
+    bit (concat_bit (LENGTH('a) - q) (drop_bit q (take_bit LENGTH('a) k)) (take_bit q k)) n \<longleftrightarrow>
+    n < LENGTH('a) \<and> bit k ((n + q) mod LENGTH('a))\<close>
+    using \<open>q < LENGTH('a)\<close>
+    by (cases \<open>q + n \<ge> LENGTH('a)\<close>)
+     (auto simp add: bit_concat_bit_iff bit_drop_bit_eq
+        bit_take_bit_iff le_mod_geq ac_simps)
+  ultimately show \<open>n < LENGTH('a) \<and>
+    bit (concat_bit (LENGTH('a) - m mod LENGTH('a))
+      (drop_bit (m mod LENGTH('a)) (take_bit LENGTH('a) k))
+      (take_bit (m mod LENGTH('a)) k)) n
+    \<longleftrightarrow> n < LENGTH('a) \<and>
+      (n + m) mod LENGTH('a) < LENGTH('a) \<and>
+      bit k ((n + m) mod LENGTH('a))\<close>
+    by simp
+qed
+
+lemma bit_word_rotl_iff:
+  \<open>bit (word_rotl m w) n \<longleftrightarrow>
+    n < LENGTH('a) \<and> bit w ((n + (LENGTH('a) - m mod LENGTH('a))) mod LENGTH('a))\<close>
+  for w :: \<open>'a::len word\<close>
+  by (simp add: word_rotl_eq_word_rotr bit_word_rotr_iff)
+
+lemma bit_word_roti_iff:
+  \<open>bit (word_roti k w) n \<longleftrightarrow>
+    n < LENGTH('a) \<and> bit w (nat ((int n + k) mod int LENGTH('a)))\<close>
+  for w :: \<open>'a::len word\<close>
+proof transfer
+  fix k l :: int and n :: nat
+  define m where \<open>m = nat (k mod int LENGTH('a))\<close>
+  have \<open>m < LENGTH('a)\<close> 
+    by (simp add: nat_less_iff m_def)
+  then have \<open>m \<le> LENGTH('a)\<close>
+    by simp
+  have \<open>k mod int LENGTH('a) = int m\<close>
+    by (simp add: nat_less_iff m_def)
+  moreover have \<open>(int n + k) mod int LENGTH('a) = int ((n + m) mod LENGTH('a))\<close>
+    by (subst mod_add_right_eq [symmetric]) (simp add: of_nat_mod \<open>k mod int LENGTH('a) = int m\<close>)
+  moreover have \<open>n < LENGTH('a) \<and>
+    bit (concat_bit (LENGTH('a) - m) (drop_bit m (take_bit LENGTH('a) l)) (take_bit m l)) n \<longleftrightarrow>
+    n < LENGTH('a) \<and> bit l ((n + m) mod LENGTH('a))\<close>
+    using \<open>m < LENGTH('a)\<close>
+    by (cases \<open>m + n \<ge> LENGTH('a)\<close>)
+     (auto simp add: bit_concat_bit_iff bit_drop_bit_eq
+        bit_take_bit_iff nat_less_iff not_le not_less ac_simps
+        le_diff_conv le_mod_geq)
+  ultimately show \<open>n < LENGTH('a)
+    \<and> bit (concat_bit (LENGTH('a) - nat (k mod int LENGTH('a)))
+             (drop_bit (nat (k mod int LENGTH('a))) (take_bit LENGTH('a) l))
+             (take_bit (nat (k mod int LENGTH('a))) l)) n \<longleftrightarrow>
+       n < LENGTH('a) 
+    \<and> nat ((int n + k) mod int LENGTH('a)) < LENGTH('a)
+    \<and> bit l (nat ((int n + k) mod int LENGTH('a)))\<close>
+    by simp
+qed
+
+lemma uint_word_rotr_eq:
+  \<open>uint (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a))
+    (drop_bit (n mod LENGTH('a)) (uint w))
+    (uint (take_bit (n mod LENGTH('a)) w))\<close>
+  for w :: \<open>'a::len word\<close>
+  apply transfer
+  apply (simp add: concat_bit_def take_bit_drop_bit push_bit_take_bit min_def)
+  using mod_less_divisor not_less apply blast
+  done
+
+lemma [code]:
+  \<open>Word.the_int (word_rotr n w) = concat_bit (LENGTH('a) - n mod LENGTH('a))
+    (drop_bit (n mod LENGTH('a)) (Word.the_int w))
+    (Word.the_int (take_bit (n mod LENGTH('a)) w))\<close>
+  for w :: \<open>'a::len word\<close>
+  using uint_word_rotr_eq [of n w] by simp
+
+    
+subsection \<open>Split and cat operations\<close>
+
+lift_definition word_cat :: \<open>'a::len word \<Rightarrow> 'b::len word \<Rightarrow> 'c::len word\<close>
+  is \<open>\<lambda>k l. concat_bit LENGTH('b) l (take_bit LENGTH('a) k)\<close>
+  by (simp add: bit_eq_iff bit_concat_bit_iff bit_take_bit_iff)
+
+lemma word_cat_eq:
+  \<open>(word_cat v w :: 'c::len word) = push_bit LENGTH('b) (ucast v) + ucast w\<close>
+  for v :: \<open>'a::len word\<close> and w :: \<open>'b::len word\<close>
+  by transfer (simp add: concat_bit_eq ac_simps)
+
+lemma word_cat_eq' [code]:
+  \<open>word_cat a b = word_of_int (concat_bit LENGTH('b) (uint b) (uint a))\<close>
+  for a :: \<open>'a::len word\<close> and b :: \<open>'b::len word\<close>
+  by transfer (simp add: concat_bit_take_bit_eq)
+
+lemma bit_word_cat_iff:
+  \<open>bit (word_cat v w :: 'c::len word) n \<longleftrightarrow> n < LENGTH('c) \<and> (if n < LENGTH('b) then bit w n else bit v (n - LENGTH('b)))\<close> 
+  for v :: \<open>'a::len word\<close> and w :: \<open>'b::len word\<close>
+  by transfer (simp add: bit_concat_bit_iff bit_take_bit_iff)
+
+definition word_split :: \<open>'a::len word \<Rightarrow> 'b::len word \<times> 'c::len word\<close>
+  where \<open>word_split w =
+    (ucast (drop_bit LENGTH('c) w) :: 'b::len word, ucast w :: 'c::len word)\<close>
+
+definition word_rcat :: \<open>'a::len word list \<Rightarrow> 'b::len word\<close>
+  where \<open>word_rcat = word_of_int \<circ> horner_sum uint (2 ^ LENGTH('a)) \<circ> rev\<close>
+
+abbreviation (input) max_word :: \<open>'a::len word\<close>
+  \<comment> \<open>Largest representable machine integer.\<close>
+  where "max_word \<equiv> - 1"
+
+
+subsection \<open>More on conversions\<close>
+
+lemma int_word_sint:
+  \<open>sint (word_of_int x :: 'a::len word) = (x + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)\<close>
+  by transfer (simp flip: take_bit_eq_mod add: signed_take_bit_eq_take_bit_shift)
+
+lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) bin"
+  by simp
+
+lemma uint_sint: "uint w = take_bit LENGTH('a) (sint w)"
+  for w :: "'a::len word"
+  by transfer (simp add: take_bit_signed_take_bit)
+
+lemma bintr_uint: "LENGTH('a) \<le> n \<Longrightarrow> take_bit n (uint w) = uint w"
+  for w :: "'a::len word"
+  by transfer (simp add: min_def)
+
+lemma wi_bintr:
+  "LENGTH('a::len) \<le> n \<Longrightarrow>
+    word_of_int (take_bit n w) = (word_of_int w :: 'a word)"
+  by transfer simp
+
+lemma word_numeral_alt: "numeral b = word_of_int (numeral b)"
+  by (induct b, simp_all only: numeral.simps word_of_int_homs)
+
+declare word_numeral_alt [symmetric, code_abbrev]
+
+lemma word_neg_numeral_alt: "- numeral b = word_of_int (- numeral b)"
+  by (simp only: word_numeral_alt wi_hom_neg)
+
+declare word_neg_numeral_alt [symmetric, code_abbrev]
+
+lemma uint_bintrunc [simp]:
+  "uint (numeral bin :: 'a word) =
+    take_bit (LENGTH('a::len)) (numeral bin)"
+  by transfer rule
+
+lemma uint_bintrunc_neg [simp]:
+  "uint (- numeral bin :: 'a word) = take_bit (LENGTH('a::len)) (- numeral bin)"
+  by transfer rule
+
+lemma sint_sbintrunc [simp]:
+  "sint (numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (numeral bin)"
+  by transfer simp
+
+lemma sint_sbintrunc_neg [simp]:
+  "sint (- numeral bin :: 'a word) = signed_take_bit (LENGTH('a::len) - 1) (- numeral bin)"
+  by transfer simp
+
+lemma unat_bintrunc [simp]:
+  "unat (numeral bin :: 'a::len word) = nat (take_bit (LENGTH('a)) (numeral bin))"
+  by transfer simp
+
+lemma unat_bintrunc_neg [simp]:
+  "unat (- numeral bin :: 'a::len word) = nat (take_bit (LENGTH('a)) (- numeral bin))"
+  by transfer simp
+
+lemma size_0_eq: "size w = 0 \<Longrightarrow> v = w"
+  for v w :: "'a::len word"
+  by transfer simp
+
+lemma uint_ge_0 [iff]: "0 \<le> uint x"
+  by (fact unsigned_greater_eq)
+
+lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)"
+  for x :: "'a::len word"
+  by (fact unsigned_less)
+
+lemma sint_ge: "- (2 ^ (LENGTH('a) - 1)) \<le> sint x"
+  for x :: "'a::len word"
+  using sint_greater_eq [of x] by simp
+
+lemma sint_lt: "sint x < 2 ^ (LENGTH('a) - 1)"
+  for x :: "'a::len word"
+  using sint_less [of x] by simp
+
+lemma uint_m2p_neg: "uint x - 2 ^ LENGTH('a) < 0"
+  for x :: "'a::len word"
+  by (simp only: diff_less_0_iff_less uint_lt2p)
+
+lemma uint_m2p_not_non_neg: "\<not> 0 \<le> uint x - 2 ^ LENGTH('a)"
+  for x :: "'a::len word"
+  by (simp only: not_le uint_m2p_neg)
+
+lemma lt2p_lem: "LENGTH('a) \<le> n \<Longrightarrow> uint w < 2 ^ n"
+  for w :: "'a::len word"
+  using uint_bounded [of w] by (rule less_le_trans) simp
+
+lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0"
+  by (fact uint_ge_0 [THEN leD, THEN antisym_conv1])
+
+lemma uint_nat: "uint w = int (unat w)"
+  by transfer simp
+
+lemma uint_numeral: "uint (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)"
+  by (simp flip: take_bit_eq_mod add: of_nat_take_bit)
+
+lemma uint_neg_numeral: "uint (- numeral b :: 'a::len word) = - numeral b mod 2 ^ LENGTH('a)"
+  by (simp flip: take_bit_eq_mod add: of_nat_take_bit)
+
+lemma unat_numeral: "unat (numeral b :: 'a::len word) = numeral b mod 2 ^ LENGTH('a)"
+  by transfer (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq)
+
+lemma sint_numeral:
+  "sint (numeral b :: 'a::len word) =
+    (numeral b + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - 2 ^ (LENGTH('a) - 1)"
+  apply (transfer fixing: b)
+  using int_word_sint [of \<open>numeral b\<close>]
+  apply simp
+  done
+
+lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0"
+  by (fact of_int_0)
+
+lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1"
+  by (fact of_int_1)
+
+lemma word_of_int_neg_1 [simp]: "word_of_int (- 1) = - 1"
+  by (simp add: wi_hom_syms)
+
+lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len word) = numeral bin"
+  by (fact of_int_numeral)
+
+lemma word_of_int_neg_numeral [simp]:
+  "(word_of_int (- numeral bin) :: 'a::len word) = - numeral bin"
+  by (fact of_int_neg_numeral)
+
+lemma word_int_case_wi:
+  "word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len))"
+  by transfer (simp add: take_bit_eq_mod)
+
+lemma word_int_split:
+  "P (word_int_case f x) =
+    (\<forall>i. x = (word_of_int i :: 'b::len word) \<and> 0 \<le> i \<and> i < 2 ^ LENGTH('b) \<longrightarrow> P (f i))"
+  by transfer (auto simp add: take_bit_eq_mod)
+
+lemma word_int_split_asm:
+  "P (word_int_case f x) =
+    (\<nexists>n. x = (word_of_int n :: 'b::len word) \<and> 0 \<le> n \<and> n < 2 ^ LENGTH('b::len) \<and> \<not> P (f n))"
+  by transfer (auto simp add: take_bit_eq_mod)
+
+lemma uint_range_size: "0 \<le> uint w \<and> uint w < 2 ^ size w"
+  by transfer simp
+
+lemma sint_range_size: "- (2 ^ (size w - Suc 0)) \<le> sint w \<and> sint w < 2 ^ (size w - Suc 0)"
+  by (simp add: word_size sint_greater_eq sint_less)
+
+lemma sint_above_size: "2 ^ (size w - 1) \<le> x \<Longrightarrow> sint w < x"
+  for w :: "'a::len word"
+  unfolding word_size by (rule less_le_trans [OF sint_lt])
+
+lemma sint_below_size: "x \<le> - (2 ^ (size w - 1)) \<Longrightarrow> x \<le> sint w"
+  for w :: "'a::len word"
+  unfolding word_size by (rule order_trans [OF _ sint_ge])
+
+
+subsection \<open>Testing bits\<close>
+
+lemma bin_nth_uint_imp: "bit (uint w) n \<Longrightarrow> n < LENGTH('a)"
+  for w :: "'a::len word"
+  by transfer (simp add: bit_take_bit_iff)
+
+lemma bin_nth_sint:
+  "LENGTH('a) \<le> n \<Longrightarrow>
+    bit (sint w) n = bit (sint w) (LENGTH('a) - 1)"
+  for w :: "'a::len word"
+  by (transfer fixing: n) (simp add: bit_signed_take_bit_iff le_diff_conv min_def)
+
+lemma num_of_bintr':
+  "take_bit (LENGTH('a::len)) (numeral a :: int) = (numeral b) \<Longrightarrow>
+    numeral a = (numeral b :: 'a word)"
+proof (transfer fixing: a b)
+  assume \<open>take_bit LENGTH('a) (numeral a :: int) = numeral b\<close>
+  then have \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\<close>
+    by simp
+  then show \<open>take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\<close>
+    by simp
+qed
+
+lemma num_of_sbintr':
+  "signed_take_bit (LENGTH('a::len) - 1) (numeral a :: int) = (numeral b) \<Longrightarrow>
+    numeral a = (numeral b :: 'a word)"
+proof (transfer fixing: a b)
+  assume \<open>signed_take_bit (LENGTH('a) - 1) (numeral a :: int) = numeral b\<close>
+  then have \<open>take_bit LENGTH('a) (signed_take_bit (LENGTH('a) - 1) (numeral a :: int)) = take_bit LENGTH('a) (numeral b)\<close>
+    by simp
+  then show \<open>take_bit LENGTH('a) (numeral a :: int) = take_bit LENGTH('a) (numeral b)\<close>
+    by (simp add: take_bit_signed_take_bit)
+qed
+ 
+lemma num_abs_bintr:
+  "(numeral x :: 'a word) =
+    word_of_int (take_bit (LENGTH('a::len)) (numeral x))"
+  by transfer simp
+
+lemma num_abs_sbintr:
+  "(numeral x :: 'a word) =
+    word_of_int (signed_take_bit (LENGTH('a::len) - 1) (numeral x))"
+  by transfer (simp add: take_bit_signed_take_bit)
+
+text \<open>
+  \<open>cast\<close> -- note, no arg for new length, as it's determined by type of result,
+  thus in \<open>cast w = w\<close>, the type means cast to length of \<open>w\<close>!
+\<close>
+
+lemma bit_ucast_iff:
+  \<open>bit (ucast a :: 'a::len word) n \<longleftrightarrow> n < LENGTH('a::len) \<and> Parity.bit a n\<close>
+  by transfer (simp add: bit_take_bit_iff)
+
+lemma ucast_id [simp]: "ucast w = w"
+  by transfer simp
+
+lemma scast_id [simp]: "scast w = w"
+  by transfer (simp add: take_bit_signed_take_bit)
+
+lemma ucast_mask_eq:
+  \<open>ucast (mask n :: 'b word) = mask (min LENGTH('b::len) n)\<close>
+  by (simp add: bit_eq_iff) (auto simp add: bit_mask_iff bit_ucast_iff exp_eq_zero_iff)
+
+\<comment> \<open>literal u(s)cast\<close>
+lemma ucast_bintr [simp]:
+  "ucast (numeral w :: 'a::len word) =
+    word_of_int (take_bit (LENGTH('a)) (numeral w))"
+  by transfer simp
+
+(* TODO: neg_numeral *)
+
+lemma scast_sbintr [simp]:
+  "scast (numeral w ::'a::len word) =
+    word_of_int (signed_take_bit (LENGTH('a) - Suc 0) (numeral w))"
+  by transfer simp
+
+lemma source_size: "source_size (c::'a::len word \<Rightarrow> _) = LENGTH('a)"
+  by transfer simp
+
+lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len word) = LENGTH('b)"
+  by transfer simp
+
+lemma is_down: "is_down c \<longleftrightarrow> LENGTH('b) \<le> LENGTH('a)"
+  for c :: "'a::len word \<Rightarrow> 'b::len word"
+  by transfer simp
+
+lemma is_up: "is_up c \<longleftrightarrow> LENGTH('a) \<le> LENGTH('b)"
+  for c :: "'a::len word \<Rightarrow> 'b::len word"
+  by transfer simp
+
+lemma is_up_down:
+  \<open>is_up c \<longleftrightarrow> is_down d\<close>
+  for c :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  and d :: \<open>'b::len word \<Rightarrow> 'a::len word\<close>
+  by transfer simp
+
+context
+  fixes dummy_types :: \<open>'a::len \<times> 'b::len\<close>
+begin
+
+private abbreviation (input) UCAST :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>UCAST == ucast\<close>
+
+private abbreviation (input) SCAST :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>SCAST == scast\<close>
+
+lemma down_cast_same:
+  \<open>UCAST = scast\<close> if \<open>is_down UCAST\<close>
+  by (rule ext, use that in transfer) (simp add: take_bit_signed_take_bit)
+
+lemma sint_up_scast:
+  \<open>sint (SCAST w) = sint w\<close> if \<open>is_up SCAST\<close>
+  using that by transfer (simp add: min_def Suc_leI le_diff_iff)
+
+lemma uint_up_ucast:
+  \<open>uint (UCAST w) = uint w\<close> if \<open>is_up UCAST\<close>
+  using that by transfer (simp add: min_def)
+
+lemma ucast_up_ucast:
+  \<open>ucast (UCAST w) = ucast w\<close> if \<open>is_up UCAST\<close>
+  using that by transfer (simp add: ac_simps)
+
+lemma ucast_up_ucast_id:
+  \<open>ucast (UCAST w) = w\<close> if \<open>is_up UCAST\<close>
+  using that by (simp add: ucast_up_ucast)
+
+lemma scast_up_scast:
+  \<open>scast (SCAST w) = scast w\<close> if \<open>is_up SCAST\<close>
+  using that by transfer (simp add: ac_simps)
+
+lemma scast_up_scast_id:
+  \<open>scast (SCAST w) = w\<close> if \<open>is_up SCAST\<close>
+  using that by (simp add: scast_up_scast)
+
+lemma isduu:
+  \<open>is_up UCAST\<close> if \<open>is_down d\<close>
+    for d :: \<open>'b word \<Rightarrow> 'a word\<close>
+  using that is_up_down [of UCAST d] by simp
+
+lemma isdus:
+  \<open>is_up SCAST\<close> if \<open>is_down d\<close>
+    for d :: \<open>'b word \<Rightarrow> 'a word\<close>
+  using that is_up_down [of SCAST d] by simp
+
+lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id]
+lemmas scast_down_scast_id = isdus [THEN scast_up_scast_id]
+
+lemma up_ucast_surj:
+  \<open>surj (ucast :: 'b word \<Rightarrow> 'a word)\<close> if \<open>is_up UCAST\<close>
+  by (rule surjI) (use that in \<open>rule ucast_up_ucast_id\<close>)
+
+lemma up_scast_surj:
+  \<open>surj (scast :: 'b word \<Rightarrow> 'a word)\<close> if \<open>is_up SCAST\<close>
+  by (rule surjI) (use that in \<open>rule scast_up_scast_id\<close>)
+
+lemma down_ucast_inj:
+  \<open>inj_on UCAST A\<close> if \<open>is_down (ucast :: 'b word \<Rightarrow> 'a word)\<close>
+  by (rule inj_on_inverseI) (use that in \<open>rule ucast_down_ucast_id\<close>)
+
+lemma down_scast_inj:
+  \<open>inj_on SCAST A\<close> if \<open>is_down (scast :: 'b word \<Rightarrow> 'a word)\<close>
+  by (rule inj_on_inverseI) (use that in \<open>rule scast_down_scast_id\<close>)
+  
+lemma ucast_down_wi:
+  \<open>UCAST (word_of_int x) = word_of_int x\<close> if \<open>is_down UCAST\<close>
+  using that by transfer simp
+
+lemma ucast_down_no:
+  \<open>UCAST (numeral bin) = numeral bin\<close> if \<open>is_down UCAST\<close>
+  using that by transfer simp
+
+end
+
+lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def
+
+lemma bit_last_iff:
+  \<open>bit w (LENGTH('a) - Suc 0) \<longleftrightarrow> sint w < 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
+  for w :: \<open>'a::len word\<close>
+proof -
+  have \<open>?P \<longleftrightarrow> bit (uint w) (LENGTH('a) - Suc 0)\<close>
+    by (simp add: bit_uint_iff)
+  also have \<open>\<dots> \<longleftrightarrow> ?Q\<close>
+    by (simp add: sint_uint)
+  finally show ?thesis .
+qed
+
+lemma drop_bit_eq_zero_iff_not_bit_last:
+  \<open>drop_bit (LENGTH('a) - Suc 0) w = 0 \<longleftrightarrow> \<not> bit w (LENGTH('a) - Suc 0)\<close>
+  for w :: "'a::len word"
+    apply (cases \<open>LENGTH('a)\<close>)
+    apply simp_all
+    apply (simp add: bit_iff_odd_drop_bit)
+    apply transfer
+    apply (simp add: take_bit_drop_bit)
+    apply (auto simp add: drop_bit_eq_div take_bit_eq_mod min_def)
+    apply (auto elim!: evenE)
+    apply (metis div_exp_eq mod_div_trivial mult.commute nonzero_mult_div_cancel_left power_Suc0_right power_add zero_neq_numeral)
+    done
+
+
+subsection \<open>Word Arithmetic\<close>
+
+lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b
+lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b
+lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b
+lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b
+lemmas word_sless_no [simp] = word_sless_eq [of "numeral a" "numeral b"] for a b
+lemmas word_sle_no [simp] = word_sle_eq [of "numeral a" "numeral b"] for a b
+
+lemma size_0_same': "size w = 0 \<Longrightarrow> w = v"
+  for v w :: "'a::len word"
+  by (unfold word_size) simp
+
+lemmas size_0_same = size_0_same' [unfolded word_size]
+
+lemmas unat_eq_0 = unat_0_iff
+lemmas unat_eq_zero = unat_0_iff
+
+
+subsection \<open>Transferring goals from words to ints\<close>
+
+lemma word_ths:
+  shows word_succ_p1: "word_succ a = a + 1"
+    and word_pred_m1: "word_pred a = a - 1"
+    and word_pred_succ: "word_pred (word_succ a) = a"
+    and word_succ_pred: "word_succ (word_pred a) = a"
+    and word_mult_succ: "word_succ a * b = b + a * b"
+  by (transfer, simp add: algebra_simps)+
+
+lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y"
+  by simp
+
+lemma uint_word_ariths:
+  fixes a b :: "'a::len word"
+  shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len)"
+    and "uint (a - b) = (uint a - uint b) mod 2 ^ LENGTH('a)"
+    and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)"
+    and "uint (- a) = - uint a mod 2 ^ LENGTH('a)"
+    and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)"
+    and "uint (word_pred a) = (uint a - 1) mod 2 ^ LENGTH('a)"
+    and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)"
+    and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)"
+  by (simp_all only: word_arith_wis uint_word_of_int_eq flip: take_bit_eq_mod)
+
+lemma uint_word_arith_bintrs:
+  fixes a b :: "'a::len word"
+  shows "uint (a + b) = take_bit (LENGTH('a)) (uint a + uint b)"
+    and "uint (a - b) = take_bit (LENGTH('a)) (uint a - uint b)"
+    and "uint (a * b) = take_bit (LENGTH('a)) (uint a * uint b)"
+    and "uint (- a) = take_bit (LENGTH('a)) (- uint a)"
+    and "uint (word_succ a) = take_bit (LENGTH('a)) (uint a + 1)"
+    and "uint (word_pred a) = take_bit (LENGTH('a)) (uint a - 1)"
+    and "uint (0 :: 'a word) = take_bit (LENGTH('a)) 0"
+    and "uint (1 :: 'a word) = take_bit (LENGTH('a)) 1"
+  by (simp_all add: uint_word_ariths take_bit_eq_mod)
+
+lemma sint_word_ariths:
+  fixes a b :: "'a::len word"
+  shows "sint (a + b) = signed_take_bit (LENGTH('a) - 1) (sint a + sint b)"
+    and "sint (a - b) = signed_take_bit (LENGTH('a) - 1) (sint a - sint b)"
+    and "sint (a * b) = signed_take_bit (LENGTH('a) - 1) (sint a * sint b)"
+    and "sint (- a) = signed_take_bit (LENGTH('a) - 1) (- sint a)"
+    and "sint (word_succ a) = signed_take_bit (LENGTH('a) - 1) (sint a + 1)"
+    and "sint (word_pred a) = signed_take_bit (LENGTH('a) - 1) (sint a - 1)"
+    and "sint (0 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 0"
+    and "sint (1 :: 'a word) = signed_take_bit (LENGTH('a) - 1) 1"
+         apply transfer apply (simp add: signed_take_bit_add)
+        apply transfer apply (simp add: signed_take_bit_diff)
+       apply transfer apply (simp add: signed_take_bit_mult)
+      apply transfer apply (simp add: signed_take_bit_minus)
+     apply (metis of_int_sint scast_id sint_sbintrunc' wi_hom_succ)
+    apply (metis of_int_sint scast_id sint_sbintrunc' wi_hom_pred)
+   apply (simp_all add: sint_uint)
+  done
+
+lemma word_pred_0_n1: "word_pred 0 = word_of_int (- 1)"
+  unfolding word_pred_m1 by simp
+
+lemma succ_pred_no [simp]:
+    "word_succ (numeral w) = numeral w + 1"
+    "word_pred (numeral w) = numeral w - 1"
+    "word_succ (- numeral w) = - numeral w + 1"
+    "word_pred (- numeral w) = - numeral w - 1"
+  by (simp_all add: word_succ_p1 word_pred_m1)
+
+lemma word_sp_01 [simp]:
+  "word_succ (- 1) = 0 \<and> word_succ 0 = 1 \<and> word_pred 0 = - 1 \<and> word_pred 1 = 0"
+  by (simp_all add: word_succ_p1 word_pred_m1)
+
+\<comment> \<open>alternative approach to lifting arithmetic equalities\<close>
+lemma word_of_int_Ex: "\<exists>y. x = word_of_int y"
+  by (rule_tac x="uint x" in exI) simp
+
+
+subsection \<open>Order on fixed-length words\<close>
+
+lift_definition udvd :: \<open>'a::len word \<Rightarrow> 'a::len word \<Rightarrow> bool\<close> (infixl \<open>udvd\<close> 50)
+  is \<open>\<lambda>k l. take_bit LENGTH('a) k dvd take_bit LENGTH('a) l\<close> by simp
+
+lemma udvd_iff_dvd:
+  \<open>x udvd y \<longleftrightarrow> unat x dvd unat y\<close>
+  by transfer (simp add: nat_dvd_iff)
+
+lemma udvd_iff_dvd_int:
+  \<open>v udvd w \<longleftrightarrow> uint v dvd uint w\<close>
+  by transfer rule
+
+lemma udvdI [intro]:
+  \<open>v udvd w\<close> if \<open>unat w = unat v * unat u\<close>
+proof -
+  from that have \<open>unat v dvd unat w\<close> ..
+  then show ?thesis
+    by (simp add: udvd_iff_dvd)
+qed
+
+lemma udvdE [elim]:
+  fixes v w :: \<open>'a::len word\<close>
+  assumes \<open>v udvd w\<close>
+  obtains u :: \<open>'a word\<close> where \<open>unat w = unat v * unat u\<close>
+proof (cases \<open>v = 0\<close>)
+  case True
+  moreover from True \<open>v udvd w\<close> have \<open>w = 0\<close>
+    by transfer simp
+  ultimately show thesis
+    using that by simp
+next
+  case False
+  then have \<open>unat v > 0\<close>
+    by (simp add: unat_gt_0)
+  from \<open>v udvd w\<close> have \<open>unat v dvd unat w\<close>
+    by (simp add: udvd_iff_dvd)
+  then obtain n where \<open>unat w = unat v * n\<close> ..
+  moreover have \<open>n < 2 ^ LENGTH('a)\<close>
+  proof (rule ccontr)
+    assume \<open>\<not> n < 2 ^ LENGTH('a)\<close>
+    then have \<open>n \<ge> 2 ^ LENGTH('a)\<close>
+      by (simp add: not_le)
+    then have \<open>unat v * n \<ge> 2 ^ LENGTH('a)\<close>
+      using \<open>unat v > 0\<close> mult_le_mono [of 1 \<open>unat v\<close> \<open>2 ^ LENGTH('a)\<close> n]
+      by simp
+    with \<open>unat w = unat v * n\<close>
+    have \<open>unat w \<ge> 2 ^ LENGTH('a)\<close>
+      by simp
+    with unsigned_less [of w, where ?'a = nat] show False
+      by linarith
+  qed
+  ultimately have \<open>unat w = unat v * unat (word_of_nat n :: 'a word)\<close>
+    by (auto simp add: take_bit_nat_eq_self_iff intro: sym)
+  with that show thesis .
+qed
+
+lemma udvd_imp_mod_eq_0:
+  \<open>w mod v = 0\<close> if \<open>v udvd w\<close>
+  using that by transfer simp
+
+lemma mod_eq_0_imp_udvd [intro?]:
+  \<open>v udvd w\<close> if \<open>w mod v = 0\<close>
+proof -
+  from that have \<open>unat (w mod v) = unat 0\<close>
+    by simp
+  then have \<open>unat w mod unat v = 0\<close>
+    by (simp add: unat_mod_distrib)
+  then have \<open>unat v dvd unat w\<close> ..
+  then show ?thesis
+    by (simp add: udvd_iff_dvd)
+qed
+
+lemma udvd_imp_dvd:
+  \<open>v dvd w\<close> if \<open>v udvd w\<close> for v w :: \<open>'a::len word\<close>
+proof -
+  from that obtain u :: \<open>'a word\<close> where \<open>unat w = unat v * unat u\<close> ..
+  then have \<open>(word_of_nat (unat w) :: 'a word) = word_of_nat (unat v * unat u)\<close>
+    by simp
+  then have \<open>w = v * u\<close>
+    by simp
+  then show \<open>v dvd w\<close> ..
+qed
+
+lemma exp_dvd_iff_exp_udvd:
+  \<open>2 ^ n dvd w \<longleftrightarrow> 2 ^ n udvd w\<close> for v w :: \<open>'a::len word\<close>
+proof
+  assume \<open>2 ^ n udvd w\<close> then show \<open>2 ^ n dvd w\<close>
+    by (rule udvd_imp_dvd) 
+next
+  assume \<open>2 ^ n dvd w\<close>
+  then obtain u :: \<open>'a word\<close> where \<open>w = 2 ^ n * u\<close> ..
+  then have \<open>w = push_bit n u\<close>
+    by (simp add: push_bit_eq_mult)
+  then show \<open>2 ^ n udvd w\<close>
+    by transfer (simp add: take_bit_push_bit dvd_eq_mod_eq_0 flip: take_bit_eq_mod)
+qed
+
+lemma udvd_nat_alt:
+  \<open>a udvd b \<longleftrightarrow> (\<exists>n. unat b = n * unat a)\<close>
+  by (auto simp add: udvd_iff_dvd)
+
+lemma udvd_unfold_int:
+  \<open>a udvd b \<longleftrightarrow> (\<exists>n\<ge>0. uint b = n * uint a)\<close>
+  apply (auto elim!: dvdE simp add: udvd_iff_dvd)
+   apply (simp only: uint_nat)
+   apply auto
+  using of_nat_0_le_iff apply blast
+  apply (simp only: unat_eq_nat_uint)
+  apply (simp add: nat_mult_distrib)
+  done
+
+lemma unat_minus_one:
+  \<open>unat (w - 1) = unat w - 1\<close> if \<open>w \<noteq> 0\<close>
+proof -
+  have "0 \<le> uint w" by (fact uint_nonnegative)
+  moreover from that have "0 \<noteq> uint w"
+    by (simp add: uint_0_iff)
+  ultimately have "1 \<le> uint w"
+    by arith
+  from uint_lt2p [of w] have "uint w - 1 < 2 ^ LENGTH('a)"
+    by arith
+  with \<open>1 \<le> uint w\<close> have "(uint w - 1) mod 2 ^ LENGTH('a) = uint w - 1"
+    by (auto intro: mod_pos_pos_trivial)
+  with \<open>1 \<le> uint w\<close> have "nat ((uint w - 1) mod 2 ^ LENGTH('a)) = nat (uint w) - 1"
+    by (auto simp del: nat_uint_eq)
+  then show ?thesis
+    by (simp only: unat_eq_nat_uint word_arith_wis mod_diff_right_eq)
+      (metis of_int_1 uint_word_of_int unsigned_1)
+qed
+
+lemma measure_unat: "p \<noteq> 0 \<Longrightarrow> unat (p - 1) < unat p"
+  by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric])
+
+lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
+lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
+
+lemma uint_sub_lt2p [simp]: "uint x - uint y < 2 ^ LENGTH('a)"
+  for x :: "'a::len word" and y :: "'b::len word"
+  using uint_ge_0 [of y] uint_lt2p [of x] by arith
+
+
+subsection \<open>Conditions for the addition (etc) of two words to overflow\<close>
+
+lemma uint_add_lem:
+  "(uint x + uint y < 2 ^ LENGTH('a)) =
+    (uint (x + y) = uint x + uint y)"
+  for x y :: "'a::len word"
+  by (metis add.right_neutral add_mono_thms_linordered_semiring(1) mod_pos_pos_trivial of_nat_0_le_iff uint_lt2p uint_nat uint_word_ariths(1))
+
+lemma uint_mult_lem:
+  "(uint x * uint y < 2 ^ LENGTH('a)) =
+    (uint (x * y) = uint x * uint y)"
+  for x y :: "'a::len word"
+  by (metis mod_pos_pos_trivial uint_lt2p uint_mult_ge0 uint_word_ariths(3))
+
+lemma uint_sub_lem: "uint x \<ge> uint y \<longleftrightarrow> uint (x - y) = uint x - uint y"
+  by (metis diff_ge_0_iff_ge of_nat_0_le_iff uint_nat uint_sub_lt2p uint_word_of_int unique_euclidean_semiring_numeral_class.mod_less word_sub_wi)
+
+lemma uint_add_le: "uint (x + y) \<le> uint x + uint y"
+  unfolding uint_word_ariths by (simp add: zmod_le_nonneg_dividend) 
+
+lemma uint_sub_ge: "uint (x - y) \<ge> uint x - uint y"
+  unfolding uint_word_ariths
+  by (simp flip: take_bit_eq_mod add: take_bit_int_greater_eq_self_iff)
+
+lemma int_mod_ge: \<open>a \<le> a mod n\<close> if \<open>a < n\<close> \<open>0 < n\<close>
+  for a n :: int
+proof (cases \<open>a < 0\<close>)
+  case True
+  with \<open>0 < n\<close> show ?thesis
+    by (metis less_trans not_less pos_mod_conj)
+    
+next
+  case False
+  with \<open>a < n\<close> show ?thesis
+    by simp
+qed
+
+lemma mod_add_if_z:
+  "x < z \<Longrightarrow> y < z \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> z \<Longrightarrow>
+    (x + y) mod z = (if x + y < z then x + y else x + y - z)"
+  for x y z :: int
+  apply (auto simp add: not_less)
+  apply (rule antisym)
+   apply (metis diff_ge_0_iff_ge minus_mod_self2 zmod_le_nonneg_dividend)
+  apply (simp only: flip: minus_mod_self2 [of \<open>x + y\<close> z])
+  apply (metis add.commute add_less_cancel_left add_mono_thms_linordered_field(5) diff_add_cancel diff_ge_0_iff_ge mod_pos_pos_trivial order_refl)
+  done
+
+lemma uint_plus_if':
+  "uint (a + b) =
+    (if uint a + uint b < 2 ^ LENGTH('a) then uint a + uint b
+     else uint a + uint b - 2 ^ LENGTH('a))"
+  for a b :: "'a::len word"
+  using mod_add_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths)
+
+lemma mod_sub_if_z:
+  "x < z \<Longrightarrow> y < z \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> z \<Longrightarrow>
+    (x - y) mod z = (if y \<le> x then x - y else x - y + z)"
+  for x y z :: int
+  apply (auto simp add: not_le)
+  apply (rule antisym)
+   apply (simp only: flip: mod_add_self2 [of \<open>x - y\<close> z])
+   apply (rule zmod_le_nonneg_dividend)
+   apply simp
+  apply (metis add.commute add.right_neutral add_le_cancel_left diff_ge_0_iff_ge int_mod_ge le_less le_less_trans mod_add_self1 not_less)
+  done
+
+lemma uint_sub_if':
+  "uint (a - b) =
+    (if uint b \<le> uint a then uint a - uint b
+     else uint a - uint b + 2 ^ LENGTH('a))"
+  for a b :: "'a::len word"
+  using mod_sub_if_z [of "uint a" _ "uint b"] by (simp add: uint_word_ariths)
+
+
+subsection \<open>Definition of \<open>uint_arith\<close>\<close>
+
+lemma word_of_int_inverse:
+  "word_of_int r = a \<Longrightarrow> 0 \<le> r \<Longrightarrow> r < 2 ^ LENGTH('a) \<Longrightarrow> uint a = r"
+  for a :: "'a::len word"
+  apply transfer
+  apply (drule sym)
+  apply (simp add: take_bit_int_eq_self)
+  done
+
+lemma uint_split:
+  "P (uint x) = (\<forall>i. word_of_int i = x \<and> 0 \<le> i \<and> i < 2^LENGTH('a) \<longrightarrow> P i)"
+  for x :: "'a::len word"
+  by transfer (auto simp add: take_bit_eq_mod)
+
+lemma uint_split_asm:
+  "P (uint x) = (\<nexists>i. word_of_int i = x \<and> 0 \<le> i \<and> i < 2^LENGTH('a) \<and> \<not> P i)"
+  for x :: "'a::len word"
+  by auto (metis take_bit_int_eq_self_iff)
+
+lemmas uint_splits = uint_split uint_split_asm
+
+lemmas uint_arith_simps =
+  word_le_def word_less_alt
+  word_uint_eq_iff
+  uint_sub_if' uint_plus_if'
+
+\<comment> \<open>use this to stop, eg. \<open>2 ^ LENGTH(32)\<close> being simplified\<close>
+lemma power_False_cong: "False \<Longrightarrow> a ^ b = c ^ d"
+  by auto
+
+\<comment> \<open>\<open>uint_arith_tac\<close>: reduce to arithmetic on int, try to solve by arith\<close>
+ML \<open>
+val uint_arith_simpset =
+  @{context}
+  |> fold Simplifier.add_simp @{thms uint_arith_simps}
+  |> fold Splitter.add_split @{thms if_split_asm}
+  |> fold Simplifier.add_cong @{thms power_False_cong}
+  |> simpset_of;
+  
+fun uint_arith_tacs ctxt =
+  let
+    fun arith_tac' n t =
+      Arith_Data.arith_tac ctxt n t
+        handle Cooper.COOPER _ => Seq.empty;
+  in
+    [ clarify_tac ctxt 1,
+      full_simp_tac (put_simpset uint_arith_simpset ctxt) 1,
+      ALLGOALS (full_simp_tac
+        (put_simpset HOL_ss ctxt
+          |> fold Splitter.add_split @{thms uint_splits}
+          |> fold Simplifier.add_cong @{thms power_False_cong})),
+      rewrite_goals_tac ctxt @{thms word_size},
+      ALLGOALS  (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN
+                         REPEAT (eresolve_tac ctxt [conjE] n) THEN
+                         REPEAT (dresolve_tac ctxt @{thms word_of_int_inverse} n
+                                 THEN assume_tac ctxt n
+                                 THEN assume_tac ctxt n)),
+      TRYALL arith_tac' ]
+  end
+
+fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt))
+\<close>
+
+method_setup uint_arith =
+  \<open>Scan.succeed (SIMPLE_METHOD' o uint_arith_tac)\<close>
+  "solving word arithmetic via integers and arith"
+
+
+subsection \<open>More on overflows and monotonicity\<close>
+
+lemma no_plus_overflow_uint_size: "x \<le> x + y \<longleftrightarrow> uint x + uint y < 2 ^ size x"
+  for x y :: "'a::len word"
+  unfolding word_size by uint_arith
+
+lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size]
+
+lemma no_ulen_sub: "x \<ge> x - y \<longleftrightarrow> uint y \<le> uint x"
+  for x y :: "'a::len word"
+  by uint_arith
+
+lemma no_olen_add': "x \<le> y + x \<longleftrightarrow> uint y + uint x < 2 ^ LENGTH('a)"
+  for x y :: "'a::len word"
+  by (simp add: ac_simps no_olen_add)
+
+lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]]
+
+lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem]
+lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1]
+lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem]
+lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def]
+lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def]
+lemmas word_sub_le = word_sub_le_iff [THEN iffD2]
+
+lemma word_less_sub1: "x \<noteq> 0 \<Longrightarrow> 1 < x \<longleftrightarrow> 0 < x - 1"
+  for x :: "'a::len word"
+  by uint_arith
+
+lemma word_le_sub1: "x \<noteq> 0 \<Longrightarrow> 1 \<le> x \<longleftrightarrow> 0 \<le> x - 1"
+  for x :: "'a::len word"
+  by uint_arith
+
+lemma sub_wrap_lt: "x < x - z \<longleftrightarrow> x < z"
+  for x z :: "'a::len word"
+  by uint_arith
+
+lemma sub_wrap: "x \<le> x - z \<longleftrightarrow> z = 0 \<or> x < z"
+  for x z :: "'a::len word"
+  by uint_arith
+
+lemma plus_minus_not_NULL_ab: "x \<le> ab - c \<Longrightarrow> c \<le> ab \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> x + c \<noteq> 0"
+  for x ab c :: "'a::len word"
+  by uint_arith
+
+lemma plus_minus_no_overflow_ab: "x \<le> ab - c \<Longrightarrow> c \<le> ab \<Longrightarrow> x \<le> x + c"
+  for x ab c :: "'a::len word"
+  by uint_arith
+
+lemma le_minus': "a + c \<le> b \<Longrightarrow> a \<le> a + c \<Longrightarrow> c \<le> b - a"
+  for a b c :: "'a::len word"
+  by uint_arith
+
+lemma le_plus': "a \<le> b \<Longrightarrow> c \<le> b - a \<Longrightarrow> a + c \<le> b"
+  for a b c :: "'a::len word"
+  by uint_arith
+
+lemmas le_plus = le_plus' [rotated]
+
+lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *)
+
+lemma word_plus_mono_right: "y \<le> z \<Longrightarrow> x \<le> x + z \<Longrightarrow> x + y \<le> x + z"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_less_minus_cancel: "y - x < z - x \<Longrightarrow> x \<le> z \<Longrightarrow> y < z"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_less_minus_mono_left: "y < z \<Longrightarrow> x \<le> y \<Longrightarrow> y - x < z - x"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_less_minus_mono: "a < c \<Longrightarrow> d < b \<Longrightarrow> a - b < a \<Longrightarrow> c - d < c \<Longrightarrow> a - b < c - d"
+  for a b c d :: "'a::len word"
+  by uint_arith
+
+lemma word_le_minus_cancel: "y - x \<le> z - x \<Longrightarrow> x \<le> z \<Longrightarrow> y \<le> z"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_le_minus_mono_left: "y \<le> z \<Longrightarrow> x \<le> y \<Longrightarrow> y - x \<le> z - x"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_le_minus_mono:
+  "a \<le> c \<Longrightarrow> d \<le> b \<Longrightarrow> a - b \<le> a \<Longrightarrow> c - d \<le> c \<Longrightarrow> a - b \<le> c - d"
+  for a b c d :: "'a::len word"
+  by uint_arith
+
+lemma plus_le_left_cancel_wrap: "x + y' < x \<Longrightarrow> x + y < x \<Longrightarrow> x + y' < x + y \<longleftrightarrow> y' < y"
+  for x y y' :: "'a::len word"
+  by uint_arith
+
+lemma plus_le_left_cancel_nowrap: "x \<le> x + y' \<Longrightarrow> x \<le> x + y \<Longrightarrow> x + y' < x + y \<longleftrightarrow> y' < y"
+  for x y y' :: "'a::len word"
+  by uint_arith
+
+lemma word_plus_mono_right2: "a \<le> a + b \<Longrightarrow> c \<le> b \<Longrightarrow> a \<le> a + c"
+  for a b c :: "'a::len word"
+  by uint_arith
+
+lemma word_less_add_right: "x < y - z \<Longrightarrow> z \<le> y \<Longrightarrow> x + z < y"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_less_sub_right: "x < y + z \<Longrightarrow> y \<le> x \<Longrightarrow> x - y < z"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_le_plus_either: "x \<le> y \<or> x \<le> z \<Longrightarrow> y \<le> y + z \<Longrightarrow> x \<le> y + z"
+  for x y z :: "'a::len word"
+  by uint_arith
+
+lemma word_less_nowrapI: "x < z - k \<Longrightarrow> k \<le> z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k"
+  for x z k :: "'a::len word"
+  by uint_arith
+
+lemma inc_le: "i < m \<Longrightarrow> i + 1 \<le> m"
+  for i m :: "'a::len word"
+  by uint_arith
+
+lemma inc_i: "1 \<le> i \<Longrightarrow> i < m \<Longrightarrow> 1 \<le> i + 1 \<and> i + 1 \<le> m"
+  for i m :: "'a::len word"
+  by uint_arith
+
+lemma udvd_incr_lem:
+  "up < uq \<Longrightarrow> up = ua + n * uint K \<Longrightarrow>
+    uq = ua + n' * uint K \<Longrightarrow> up + uint K \<le> uq"
+  by auto (metis int_distrib(1) linorder_not_less mult.left_neutral mult_right_mono uint_nonnegative zless_imp_add1_zle)
+
+lemma udvd_incr':
+  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow>
+    uint q = ua + n' * uint K \<Longrightarrow> p + K \<le> q"
+  apply (unfold word_less_alt word_le_def)
+  apply (drule (2) udvd_incr_lem)
+  apply (erule uint_add_le [THEN order_trans])
+  done
+
+lemma udvd_decr':
+  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow>
+    uint q = ua + n' * uint K \<Longrightarrow> p \<le> q - K"
+  apply (unfold word_less_alt word_le_def)
+  apply (drule (2) udvd_incr_lem)
+  apply (drule le_diff_eq [THEN iffD2])
+  apply (erule order_trans)
+  apply (rule uint_sub_ge)
+  done
+
+lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left]
+lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left]
+lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left]
+
+lemma udvd_minus_le': "xy < k \<Longrightarrow> z udvd xy \<Longrightarrow> z udvd k \<Longrightarrow> xy \<le> k - z"
+  apply (unfold udvd_unfold_int)
+  apply clarify
+  apply (erule (2) udvd_decr0)
+  done
+
+lemma udvd_incr2_K:
+  "p < a + s \<Longrightarrow> a \<le> a + s \<Longrightarrow> K udvd s \<Longrightarrow> K udvd p - a \<Longrightarrow> a \<le> p \<Longrightarrow>
+    0 < K \<Longrightarrow> p \<le> p + K \<and> p + K \<le> a + s"
+  supply [[simproc del: linordered_ring_less_cancel_factor]]
+  apply (unfold udvd_unfold_int)
+  apply clarify
+  apply (simp add: uint_arith_simps split: if_split_asm)
+   prefer 2
+  using uint_lt2p [of s] apply simp
+  apply (drule add.commute [THEN xtrans(1)])
+  apply (simp flip: diff_less_eq)
+  apply (subst (asm) mult_less_cancel_right)
+  apply simp
+  apply (simp add: diff_eq_eq not_less)
+  apply (subst (asm) (3) zless_iff_Suc_zadd)
+  apply auto
+    apply (auto simp add: algebra_simps)
+  apply (drule less_le_trans [of _ \<open>2 ^ LENGTH('a)\<close>]) apply assumption
+  apply (simp add: mult_less_0_iff)
+  done
+
+
+subsection \<open>Arithmetic type class instantiations\<close>
+
+lemmas word_le_0_iff [simp] =
+  word_zero_le [THEN leD, THEN antisym_conv1]
+
+lemma word_of_int_nat: "0 \<le> x \<Longrightarrow> word_of_int x = of_nat (nat x)"
+  by simp
+
+text \<open>
+  note that \<open>iszero_def\<close> is only for class \<open>comm_semiring_1_cancel\<close>,
+  which requires word length \<open>\<ge> 1\<close>, ie \<open>'a::len word\<close>
+\<close>
+lemma iszero_word_no [simp]:
+  "iszero (numeral bin :: 'a::len word) =
+    iszero (take_bit LENGTH('a) (numeral bin :: int))"
+  apply (simp add: iszero_def)
+  apply transfer
+  apply simp
+  done
+
+text \<open>Use \<open>iszero\<close> to simplify equalities between word numerals.\<close>
+
+lemmas word_eq_numeral_iff_iszero [simp] =
+  eq_numeral_iff_iszero [where 'a="'a::len word"]
+
+
+subsection \<open>Word and nat\<close>
+
+lemma word_nchotomy: "\<forall>w :: 'a::len word. \<exists>n. w = of_nat n \<and> n < 2 ^ LENGTH('a)"
+  apply (rule allI)
+  apply (rule exI [of _ \<open>unat w\<close> for w :: \<open>'a word\<close>])
+  apply simp
+  done
+
+lemma of_nat_eq: "of_nat n = w \<longleftrightarrow> (\<exists>q. n = unat w + q * 2 ^ LENGTH('a))"
+  for w :: "'a::len word"
+  using mod_div_mult_eq [of n "2 ^ LENGTH('a)", symmetric]
+  by (auto simp flip: take_bit_eq_mod)
+
+lemma of_nat_eq_size: "of_nat n = w \<longleftrightarrow> (\<exists>q. n = unat w + q * 2 ^ size w)"
+  unfolding word_size by (rule of_nat_eq)
+
+lemma of_nat_0: "of_nat m = (0::'a::len word) \<longleftrightarrow> (\<exists>q. m = q * 2 ^ LENGTH('a))"
+  by (simp add: of_nat_eq)
+
+lemma of_nat_2p [simp]: "of_nat (2 ^ LENGTH('a)) = (0::'a::len word)"
+  by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]])
+
+lemma of_nat_gt_0: "of_nat k \<noteq> 0 \<Longrightarrow> 0 < k"
+  by (cases k) auto
+
+lemma of_nat_neq_0: "0 < k \<Longrightarrow> k < 2 ^ LENGTH('a::len) \<Longrightarrow> of_nat k \<noteq> (0 :: 'a word)"
+  by (auto simp add : of_nat_0)
+
+lemma Abs_fnat_hom_add: "of_nat a + of_nat b = of_nat (a + b)"
+  by simp
+
+lemma Abs_fnat_hom_mult: "of_nat a * of_nat b = (of_nat (a * b) :: 'a::len word)"
+  by (simp add: wi_hom_mult)
+
+lemma Abs_fnat_hom_Suc: "word_succ (of_nat a) = of_nat (Suc a)"
+  by transfer (simp add: ac_simps)
+
+lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0"
+  by simp
+
+lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)"
+  by simp
+
+lemmas Abs_fnat_homs =
+  Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc
+  Abs_fnat_hom_0 Abs_fnat_hom_1
+
+lemma word_arith_nat_add: "a + b = of_nat (unat a + unat b)"
+  by simp
+
+lemma word_arith_nat_mult: "a * b = of_nat (unat a * unat b)"
+  by simp
+
+lemma word_arith_nat_Suc: "word_succ a = of_nat (Suc (unat a))"
+  by (subst Abs_fnat_hom_Suc [symmetric]) simp
+
+lemma word_arith_nat_div: "a div b = of_nat (unat a div unat b)"
+  by (metis of_int_of_nat_eq of_nat_unat of_nat_div word_div_def)
+  
+lemma word_arith_nat_mod: "a mod b = of_nat (unat a mod unat b)"
+  by (metis of_int_of_nat_eq of_nat_mod of_nat_unat word_mod_def)
+
+lemmas word_arith_nat_defs =
+  word_arith_nat_add word_arith_nat_mult
+  word_arith_nat_Suc Abs_fnat_hom_0
+  Abs_fnat_hom_1 word_arith_nat_div
+  word_arith_nat_mod
+
+lemma unat_cong: "x = y \<Longrightarrow> unat x = unat y"
+  by (fact arg_cong)
+
+lemma unat_of_nat:
+  \<open>unat (word_of_nat x :: 'a::len word) = x mod 2 ^ LENGTH('a)\<close>
+  by transfer (simp flip: take_bit_eq_mod add: nat_take_bit_eq)
+
+lemmas unat_word_ariths = word_arith_nat_defs
+  [THEN trans [OF unat_cong unat_of_nat]]
+
+lemmas word_sub_less_iff = word_sub_le_iff
+  [unfolded linorder_not_less [symmetric] Not_eq_iff]
+
+lemma unat_add_lem:
+  "unat x + unat y < 2 ^ LENGTH('a) \<longleftrightarrow> unat (x + y) = unat x + unat y"
+  for x y :: "'a::len word"
+  apply (auto simp: unat_word_ariths)
+  apply (drule sym)
+  apply (metis unat_of_nat unsigned_less)
+  done
+
+lemma unat_mult_lem:
+  "unat x * unat y < 2 ^ LENGTH('a) \<longleftrightarrow> unat (x * y) = unat x * unat y"
+  for x y :: "'a::len word"
+  apply (auto simp: unat_word_ariths)
+  apply (drule sym)
+  apply (metis unat_of_nat unsigned_less)
+  done
+
+lemma unat_plus_if':
+  \<open>unat (a + b) =
+    (if unat a + unat b < 2 ^ LENGTH('a)
+    then unat a + unat b
+    else unat a + unat b - 2 ^ LENGTH('a))\<close> for a b :: \<open>'a::len word\<close>
+  apply (auto simp: unat_word_ariths not_less)
+  apply (subst (asm) le_iff_add)
+  apply auto
+  apply (simp flip: take_bit_eq_mod add: take_bit_nat_eq_self_iff)
+  apply (metis add.commute add_less_cancel_right le_less_trans less_imp_le unsigned_less)
+  done
+
+lemma le_no_overflow: "x \<le> b \<Longrightarrow> a \<le> a + b \<Longrightarrow> x \<le> a + b"
+  for a b x :: "'a::len word"
+  apply (erule order_trans)
+  apply (erule olen_add_eqv [THEN iffD1])
+  done
+
+lemmas un_ui_le =
+  trans [OF word_le_nat_alt [symmetric] word_le_def]
+
+lemma unat_sub_if_size:
+  "unat (x - y) =
+    (if unat y \<le> unat x
+     then unat x - unat y
+     else unat x + 2 ^ size x - unat y)"
+  supply nat_uint_eq [simp del]
+  apply (unfold word_size)
+  apply (simp add: un_ui_le)
+  apply (auto simp add: unat_eq_nat_uint uint_sub_if')
+   apply (rule nat_diff_distrib)
+    prefer 3
+    apply (simp add: algebra_simps)
+    apply (rule nat_diff_distrib [THEN trans])
+      prefer 3
+      apply (subst nat_add_distrib)
+        prefer 3
+        apply (simp add: nat_power_eq)
+       apply auto
+  apply uint_arith
+  done
+
+lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size]
+
+lemma uint_div:
+  \<open>uint (x div y) = uint x div uint y\<close>
+  by (fact uint_div_distrib)
+
+lemma unat_div:
+  \<open>unat (x div y) = unat x div unat y\<close>
+  by (fact unat_div_distrib)
+
+lemma uint_mod:
+  \<open>uint (x mod y) = uint x mod uint y\<close>
+  by (fact uint_mod_distrib)
+  
+lemma unat_mod:
+  \<open>unat (x mod y) = unat x mod unat y\<close>
+  by (fact unat_mod_distrib)
+
+
+text \<open>Definition of \<open>unat_arith\<close> tactic\<close>
+
+lemma unat_split: "P (unat x) \<longleftrightarrow> (\<forall>n. of_nat n = x \<and> n < 2^LENGTH('a) \<longrightarrow> P n)"
+  for x :: "'a::len word"
+  by auto (metis take_bit_nat_eq_self_iff)
+
+lemma unat_split_asm: "P (unat x) \<longleftrightarrow> (\<nexists>n. of_nat n = x \<and> n < 2^LENGTH('a) \<and> \<not> P n)"
+  for x :: "'a::len word"
+  by auto (metis take_bit_nat_eq_self_iff)
+
+lemma of_nat_inverse:
+  \<open>word_of_nat r = a \<Longrightarrow> r < 2 ^ LENGTH('a) \<Longrightarrow> unat a = r\<close>
+  for a :: \<open>'a::len word\<close>
+  apply (drule sym)
+  apply transfer
+  apply (simp add: take_bit_int_eq_self)
+  done
+
+lemma word_unat_eq_iff:
+  \<open>v = w \<longleftrightarrow> unat v = unat w\<close>
+  for v w :: \<open>'a::len word\<close>
+  by (fact word_eq_iff_unsigned)
+
+lemmas unat_splits = unat_split unat_split_asm
+
+lemmas unat_arith_simps =
+  word_le_nat_alt word_less_nat_alt
+  word_unat_eq_iff
+  unat_sub_if' unat_plus_if' unat_div unat_mod
+
+\<comment> \<open>\<open>unat_arith_tac\<close>: tactic to reduce word arithmetic to \<open>nat\<close>, try to solve via \<open>arith\<close>\<close>
+ML \<open>
+val unat_arith_simpset =
+  @{context}
+  |> fold Simplifier.add_simp @{thms unat_arith_simps}
+  |> fold Splitter.add_split @{thms if_split_asm}
+  |> fold Simplifier.add_cong @{thms power_False_cong}
+  |> simpset_of
+
+fun unat_arith_tacs ctxt =
+  let
+    fun arith_tac' n t =
+      Arith_Data.arith_tac ctxt n t
+        handle Cooper.COOPER _ => Seq.empty;
+  in
+    [ clarify_tac ctxt 1,
+      full_simp_tac (put_simpset unat_arith_simpset ctxt) 1,
+      ALLGOALS (full_simp_tac
+        (put_simpset HOL_ss ctxt
+          |> fold Splitter.add_split @{thms unat_splits}
+          |> fold Simplifier.add_cong @{thms power_False_cong})),
+      rewrite_goals_tac ctxt @{thms word_size},
+      ALLGOALS (fn n => REPEAT (resolve_tac ctxt [allI, impI] n) THEN
+                         REPEAT (eresolve_tac ctxt [conjE] n) THEN
+                         REPEAT (dresolve_tac ctxt @{thms of_nat_inverse} n THEN assume_tac ctxt n)),
+      TRYALL arith_tac' ]
+  end
+
+fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt))
+\<close>
+
+method_setup unat_arith =
+  \<open>Scan.succeed (SIMPLE_METHOD' o unat_arith_tac)\<close>
+  "solving word arithmetic via natural numbers and arith"
+
+lemma no_plus_overflow_unat_size: "x \<le> x + y \<longleftrightarrow> unat x + unat y < 2 ^ size x"
+  for x y :: "'a::len word"
+  unfolding word_size by unat_arith
+
+lemmas no_olen_add_nat =
+  no_plus_overflow_unat_size [unfolded word_size]
+
+lemmas unat_plus_simple =
+  trans [OF no_olen_add_nat unat_add_lem]
+
+lemma word_div_mult: "0 < y \<Longrightarrow> unat x * unat y < 2 ^ LENGTH('a) \<Longrightarrow> x * y div y = x"
+  for x y :: "'a::len word"
+  apply unat_arith
+  apply clarsimp
+  apply (subst unat_mult_lem [THEN iffD1])
+   apply auto
+  done
+
+lemma div_lt': "i \<le> k div x \<Longrightarrow> unat i * unat x < 2 ^ LENGTH('a)"
+  for i k x :: "'a::len word"
+  apply unat_arith
+  apply clarsimp
+  apply (drule mult_le_mono1)
+  apply (erule order_le_less_trans)
+  apply (metis add_lessD1 div_mult_mod_eq unsigned_less)
+  done
+
+lemmas div_lt'' = order_less_imp_le [THEN div_lt']
+
+lemma div_lt_mult: "i < k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x < k"
+  for i k x :: "'a::len word"
+  apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]])
+  apply (simp add: unat_arith_simps)
+  apply (drule (1) mult_less_mono1)
+  apply (erule order_less_le_trans)
+  apply auto
+  done
+
+lemma div_le_mult: "i \<le> k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x \<le> k"
+  for i k x :: "'a::len word"
+  apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]])
+  apply (simp add: unat_arith_simps)
+  apply (drule mult_le_mono1)
+  apply (erule order_trans)
+  apply auto
+  done
+
+lemma div_lt_uint': "i \<le> k div x \<Longrightarrow> uint i * uint x < 2 ^ LENGTH('a)"
+  for i k x :: "'a::len word"
+  apply (unfold uint_nat)
+  apply (drule div_lt')
+  apply (metis of_nat_less_iff of_nat_mult of_nat_numeral of_nat_power)
+  done
+
+lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint']
+
+lemma word_le_exists': "x \<le> y \<Longrightarrow> \<exists>z. y = x + z \<and> uint x + uint z < 2 ^ LENGTH('a)"
+  for x y z :: "'a::len word"
+  by (metis add_diff_cancel_left' add_diff_eq uint_add_lem uint_plus_simple)
+  
+lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab]
+
+lemmas plus_minus_no_overflow =
+  order_less_imp_le [THEN plus_minus_no_overflow_ab]
+
+lemmas mcs = word_less_minus_cancel word_less_minus_mono_left
+  word_le_minus_cancel word_le_minus_mono_left
+
+lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x
+lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x
+lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x
+
+lemma le_unat_uoi:
+  \<open>y \<le> unat z \<Longrightarrow> unat (word_of_nat y :: 'a word) = y\<close>
+  for z :: \<open>'a::len word\<close>
+  by transfer (simp add: nat_take_bit_eq take_bit_nat_eq_self_iff le_less_trans)
+
+lemmas thd = times_div_less_eq_dividend
+
+lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend
+
+lemma word_mod_div_equality: "(n div b) * b + (n mod b) = n"
+  for n b :: "'a::len word"
+  by (fact div_mult_mod_eq)
+
+lemma word_div_mult_le: "a div b * b \<le> a"
+  for a b :: "'a::len word"
+  by (metis div_le_mult mult_not_zero order.not_eq_order_implies_strict order_refl word_zero_le)
+
+lemma word_mod_less_divisor: "0 < n \<Longrightarrow> m mod n < n"
+  for m n :: "'a::len word"
+  by (simp add: unat_arith_simps)
+  
+lemma word_of_int_power_hom: "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a::len word)"
+  by (induct n) (simp_all add: wi_hom_mult [symmetric])
+
+lemma word_arith_power_alt: "a ^ n = (word_of_int (uint a ^ n) :: 'a::len word)"
+  by (simp add : word_of_int_power_hom [symmetric])
+
+lemma unatSuc: "1 + n \<noteq> 0 \<Longrightarrow> unat (1 + n) = Suc (unat n)"
+  for n :: "'a::len word"
+  by unat_arith
+
+
+subsection \<open>Cardinality, finiteness of set of words\<close>
+
+lemma inj_on_word_of_int: \<open>inj_on (word_of_int :: int \<Rightarrow> 'a word) {0..<2 ^ LENGTH('a::len)}\<close>
+  apply (rule inj_onI)
+  apply transfer
+  apply (simp add: take_bit_eq_mod)
+  done
+
+lemma inj_uint: \<open>inj uint\<close>
+  by (fact inj_unsigned)
+
+lemma range_uint: \<open>range (uint :: 'a word \<Rightarrow> int) = {0..<2 ^ LENGTH('a::len)}\<close>
+  apply transfer
+  apply (auto simp add: image_iff)
+  apply (metis take_bit_int_eq_self_iff)
+  done
+
+lemma UNIV_eq: \<open>(UNIV :: 'a word set) = word_of_int ` {0..<2 ^ LENGTH('a::len)}\<close>
+  by (auto simp add: image_iff) (metis atLeastLessThan_iff linorder_not_le uint_split)
+
+lemma card_word: "CARD('a word) = 2 ^ LENGTH('a::len)"
+  by (simp add: UNIV_eq card_image inj_on_word_of_int)
+
+lemma card_word_size: "CARD('a word) = 2 ^ size x"
+  for x :: "'a::len word"
+  unfolding word_size by (rule card_word)
+
+instance word :: (len) finite
+  by standard (simp add: UNIV_eq)
+
+
+subsection \<open>Bitwise Operations on Words\<close>
+
+lemma word_wi_log_defs:
+  "NOT (word_of_int a) = word_of_int (NOT a)"
+  "word_of_int a AND word_of_int b = word_of_int (a AND b)"
+  "word_of_int a OR word_of_int b = word_of_int (a OR b)"
+  "word_of_int a XOR word_of_int b = word_of_int (a XOR b)"
+  by (transfer, rule refl)+
+
+lemma word_no_log_defs [simp]:
+  "NOT (numeral a) = word_of_int (NOT (numeral a))"
+  "NOT (- numeral a) = word_of_int (NOT (- numeral a))"
+  "numeral a AND numeral b = word_of_int (numeral a AND numeral b)"
+  "numeral a AND - numeral b = word_of_int (numeral a AND - numeral b)"
+  "- numeral a AND numeral b = word_of_int (- numeral a AND numeral b)"
+  "- numeral a AND - numeral b = word_of_int (- numeral a AND - numeral b)"
+  "numeral a OR numeral b = word_of_int (numeral a OR numeral b)"
+  "numeral a OR - numeral b = word_of_int (numeral a OR - numeral b)"
+  "- numeral a OR numeral b = word_of_int (- numeral a OR numeral b)"
+  "- numeral a OR - numeral b = word_of_int (- numeral a OR - numeral b)"
+  "numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)"
+  "numeral a XOR - numeral b = word_of_int (numeral a XOR - numeral b)"
+  "- numeral a XOR numeral b = word_of_int (- numeral a XOR numeral b)"
+  "- numeral a XOR - numeral b = word_of_int (- numeral a XOR - numeral b)"
+  by (transfer, rule refl)+
+
+text \<open>Special cases for when one of the arguments equals 1.\<close>
+
+lemma word_bitwise_1_simps [simp]:
+  "NOT (1::'a::len word) = -2"
+  "1 AND numeral b = word_of_int (1 AND numeral b)"
+  "1 AND - numeral b = word_of_int (1 AND - numeral b)"
+  "numeral a AND 1 = word_of_int (numeral a AND 1)"
+  "- numeral a AND 1 = word_of_int (- numeral a AND 1)"
+  "1 OR numeral b = word_of_int (1 OR numeral b)"
+  "1 OR - numeral b = word_of_int (1 OR - numeral b)"
+  "numeral a OR 1 = word_of_int (numeral a OR 1)"
+  "- numeral a OR 1 = word_of_int (- numeral a OR 1)"
+  "1 XOR numeral b = word_of_int (1 XOR numeral b)"
+  "1 XOR - numeral b = word_of_int (1 XOR - numeral b)"
+  "numeral a XOR 1 = word_of_int (numeral a XOR 1)"
+  "- numeral a XOR 1 = word_of_int (- numeral a XOR 1)"
+  by (transfer, simp)+
+
+text \<open>Special cases for when one of the arguments equals -1.\<close>
+
+lemma word_bitwise_m1_simps [simp]:
+  "NOT (-1::'a::len word) = 0"
+  "(-1::'a::len word) AND x = x"
+  "x AND (-1::'a::len word) = x"
+  "(-1::'a::len word) OR x = -1"
+  "x OR (-1::'a::len word) = -1"
+  " (-1::'a::len word) XOR x = NOT x"
+  "x XOR (-1::'a::len word) = NOT x"
+  by (transfer, simp)+
+
+lemma uint_and:
+  \<open>uint (x AND y) = uint x AND uint y\<close>
+  by transfer simp
+
+lemma uint_or:
+  \<open>uint (x OR y) = uint x OR uint y\<close>
+  by transfer simp
+
+lemma uint_xor:
+  \<open>uint (x XOR y) = uint x XOR uint y\<close>
+  by transfer simp
+
+\<comment> \<open>get from commutativity, associativity etc of \<open>int_and\<close> etc to same for \<open>word_and etc\<close>\<close>
+lemmas bwsimps =
+  wi_hom_add
+  word_wi_log_defs
+
+lemma word_bw_assocs:
+  "(x AND y) AND z = x AND y AND z"
+  "(x OR y) OR z = x OR y OR z"
+  "(x XOR y) XOR z = x XOR y XOR z"
+  for x :: "'a::len word"
+  by (fact ac_simps)+
+
+lemma word_bw_comms:
+  "x AND y = y AND x"
+  "x OR y = y OR x"
+  "x XOR y = y XOR x"
+  for x :: "'a::len word"
+  by (fact ac_simps)+
+
+lemma word_bw_lcs:
+  "y AND x AND z = x AND y AND z"
+  "y OR x OR z = x OR y OR z"
+  "y XOR x XOR z = x XOR y XOR z"
+  for x :: "'a::len word"
+  by (fact ac_simps)+
+
+lemma word_log_esimps:
+  "x AND 0 = 0"
+  "x AND -1 = x"
+  "x OR 0 = x"
+  "x OR -1 = -1"
+  "x XOR 0 = x"
+  "x XOR -1 = NOT x"
+  "0 AND x = 0"
+  "-1 AND x = x"
+  "0 OR x = x"
+  "-1 OR x = -1"
+  "0 XOR x = x"
+  "-1 XOR x = NOT x"
+  for x :: "'a::len word"
+  by simp_all
+
+lemma word_not_dist:
+  "NOT (x OR y) = NOT x AND NOT y"
+  "NOT (x AND y) = NOT x OR NOT y"
+  for x :: "'a::len word"
+  by simp_all
+
+lemma word_bw_same:
+  "x AND x = x"
+  "x OR x = x"
+  "x XOR x = 0"
+  for x :: "'a::len word"
+  by simp_all
+
+lemma word_ao_absorbs [simp]:
+  "x AND (y OR x) = x"
+  "x OR y AND x = x"
+  "x AND (x OR y) = x"
+  "y AND x OR x = x"
+  "(y OR x) AND x = x"
+  "x OR x AND y = x"
+  "(x OR y) AND x = x"
+  "x AND y OR x = x"
+  for x :: "'a::len word"
+  by (auto intro: bit_eqI simp add: bit_and_iff bit_or_iff)
+
+lemma word_not_not [simp]: "NOT (NOT x) = x"
+  for x :: "'a::len word"
+  by (fact bit.double_compl)
+
+lemma word_ao_dist: "(x OR y) AND z = x AND z OR y AND z"
+  for x :: "'a::len word"
+  by (fact bit.conj_disj_distrib2)
+
+lemma word_oa_dist: "x AND y OR z = (x OR z) AND (y OR z)"
+  for x :: "'a::len word"
+  by (fact bit.disj_conj_distrib2)
+  
+lemma word_add_not [simp]: "x + NOT x = -1"
+  for x :: "'a::len word"
+  by (simp add: not_eq_complement)
+  
+lemma word_plus_and_or [simp]: "(x AND y) + (x OR y) = x + y"
+  for x :: "'a::len word"
+  by transfer (simp add: plus_and_or)
+
+lemma leoa: "w = x OR y \<Longrightarrow> y = w AND y"
+  for x :: "'a::len word"
+  by auto
+
+lemma leao: "w' = x' AND y' \<Longrightarrow> x' = x' OR w'"
+  for x' :: "'a::len word"
+  by auto
+
+lemma word_ao_equiv: "w = w OR w' \<longleftrightarrow> w' = w AND w'"
+  for w w' :: "'a::len word"
+  by (auto intro: leoa leao)
+
+lemma le_word_or2: "x \<le> x OR y"
+  for x y :: "'a::len word"
+  by (simp add: or_greater_eq uint_or word_le_def)
+
+lemmas le_word_or1 = xtrans(3) [OF word_bw_comms (2) le_word_or2]
+lemmas word_and_le1 = xtrans(3) [OF word_ao_absorbs (4) [symmetric] le_word_or2]
+lemmas word_and_le2 = xtrans(3) [OF word_ao_absorbs (8) [symmetric] le_word_or2]
+
+lemma bit_horner_sum_bit_word_iff:
+  \<open>bit (horner_sum of_bool (2 :: 'a::len word) bs) n
+    \<longleftrightarrow> n < min LENGTH('a) (length bs) \<and> bs ! n\<close>
+  by transfer (simp add: bit_horner_sum_bit_iff)
+
+definition word_reverse :: \<open>'a::len word \<Rightarrow> 'a word\<close>
+  where \<open>word_reverse w = horner_sum of_bool 2 (rev (map (bit w) [0..<LENGTH('a)]))\<close>
+
+lemma bit_word_reverse_iff:
+  \<open>bit (word_reverse w) n \<longleftrightarrow> n < LENGTH('a) \<and> bit w (LENGTH('a) - Suc n)\<close>
+  for w :: \<open>'a::len word\<close>
+  by (cases \<open>n < LENGTH('a)\<close>)
+    (simp_all add: word_reverse_def bit_horner_sum_bit_word_iff rev_nth)
+
+lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w"
+  by (rule bit_word_eqI)
+    (auto simp add: bit_word_reverse_iff bit_imp_le_length Suc_diff_Suc)
+
+lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w"
+  by (metis word_rev_rev)
+
+lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u"
+  by simp
+
+lemma uint_2p: "(0::'a::len word) < 2 ^ n \<Longrightarrow> uint (2 ^ n::'a::len word) = 2 ^ n"
+  apply (cases \<open>n < LENGTH('a)\<close>; transfer)
+  apply auto
+  done
+
+lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a::len word) = 2 ^ n"
+  by (induct n) (simp_all add: wi_hom_syms)
+
+
+subsection \<open>Shifting, Rotating, and Splitting Words\<close>
+
+lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (2 * w)"
+  by transfer simp
+
+lemma shiftl1_numeral [simp]: "shiftl1 (numeral w) = numeral (Num.Bit0 w)"
+  unfolding word_numeral_alt shiftl1_wi by simp
+
+lemma shiftl1_neg_numeral [simp]: "shiftl1 (- numeral w) = - numeral (Num.Bit0 w)"
+  unfolding word_neg_numeral_alt shiftl1_wi by simp
+
+lemma shiftl1_0 [simp] : "shiftl1 0 = 0"
+  by transfer simp
+
+lemma shiftl1_def_u: "shiftl1 w = word_of_int (2 * uint w)"
+  by (fact shiftl1_eq)
+
+lemma shiftl1_def_s: "shiftl1 w = word_of_int (2 * sint w)"
+  by (simp add: shiftl1_def_u wi_hom_syms)
+
+lemma shiftr1_0 [simp]: "shiftr1 0 = 0"
+  by transfer simp
+
+lemma sshiftr1_0 [simp]: "sshiftr1 0 = 0"
+  by transfer simp
+
+lemma sshiftr1_n1 [simp]: "sshiftr1 (- 1) = - 1"
+  by transfer simp
+
+text \<open>
+  see paper page 10, (1), (2), \<open>shiftr1_def\<close> is of the form of (1),
+  where \<open>f\<close> (ie \<open>_ div 2\<close>) takes normal arguments to normal results,
+  thus we get (2) from (1)
+\<close>
+
+lemma uint_shiftr1: "uint (shiftr1 w) = uint w div 2"
+  using drop_bit_eq_div [of 1 \<open>uint w\<close>, symmetric]
+  apply simp
+  apply transfer
+  apply (simp add: drop_bit_take_bit min_def)
+  done
+
+lemma bit_sshiftr1_iff:
+  \<open>bit (sshiftr1 w) n \<longleftrightarrow> bit w (if n = LENGTH('a) - 1 then LENGTH('a) - 1 else Suc n)\<close>
+  for w :: \<open>'a::len word\<close>
+  apply transfer
+  apply (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def simp flip: bit_Suc)
+  using le_less_Suc_eq apply fastforce
+  using le_less_Suc_eq apply fastforce
+  done
+
+lemma shiftr1_div_2: "uint (shiftr1 w) = uint w div 2"
+  by (fact uint_shiftr1)
+
+lemma sshiftr1_div_2: "sint (sshiftr1 w) = sint w div 2"
+  using sint_signed_drop_bit_eq [of 1 w]
+  by (simp add: drop_bit_Suc sshiftr1_eq_signed_drop_bit_Suc_0) 
+
+lemma bit_bshiftr1_iff:
+  \<open>bit (bshiftr1 b w) n \<longleftrightarrow> b \<and> n = LENGTH('a) - 1 \<or> bit w (Suc n)\<close>
+  for w :: \<open>'a::len word\<close>
+  apply transfer
+  apply (simp add: bit_take_bit_iff flip: bit_Suc)
+    apply (subst disjunctive_add)
+   apply (auto simp add: bit_take_bit_iff bit_or_iff bit_exp_iff simp flip: bit_Suc)
+  done
+
+
+subsubsection \<open>shift functions in terms of lists of bools\<close>
+
+lemma shiftl1_rev: "shiftl1 w = word_reverse (shiftr1 (word_reverse w))"
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_shiftl1_iff bit_word_reverse_iff bit_shiftr1_iff Suc_diff_Suc)
+  done
+
+\<comment> \<open>note -- the following results use \<open>'a::len word < number_ring\<close>\<close>
+
+lemma shiftl1_2t: "shiftl1 w = 2 * w"
+  for w :: "'a::len word"
+  by (simp add: shiftl1_eq wi_hom_mult [symmetric])
+
+lemma shiftl1_p: "shiftl1 w = w + w"
+  for w :: "'a::len word"
+  by (simp add: shiftl1_2t)
+
+lemma shiftr1_bintr [simp]:
+  "(shiftr1 (numeral w) :: 'a::len word) =
+    word_of_int (take_bit LENGTH('a) (numeral w) div 2)"
+  by transfer simp
+
+lemma sshiftr1_sbintr [simp]:
+  "(sshiftr1 (numeral w) :: 'a::len word) =
+    word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral w) div 2)"
+  by transfer simp
+
+text \<open>TODO: rules for \<^term>\<open>- (numeral n)\<close>\<close>
+
+lemma drop_bit_word_numeral [simp]:
+  \<open>drop_bit (numeral n) (numeral k) =
+    (word_of_int (drop_bit (numeral n) (take_bit LENGTH('a) (numeral k))) :: 'a::len word)\<close>
+  by transfer simp
+
+lemma zip_replicate: "n \<ge> length ys \<Longrightarrow> zip (replicate n x) ys = map (\<lambda>y. (x, y)) ys"
+  apply (induct ys arbitrary: n)
+   apply simp_all
+  apply (case_tac n)
+   apply simp_all
+  done
+
+lemma align_lem_or [rule_format] :
+  "\<forall>x m. length x = n + m \<longrightarrow> length y = n + m \<longrightarrow>
+    drop m x = replicate n False \<longrightarrow> take m y = replicate m False \<longrightarrow>
+    map2 (|) x y = take m x @ drop m y"
+  apply (induct y)
+   apply force
+  apply clarsimp
+  apply (case_tac x)
+   apply force
+  apply (case_tac m)
+   apply auto
+  apply (drule_tac t="length xs" for xs in sym)
+  apply (auto simp: zip_replicate o_def)
+  done
+
+lemma align_lem_and [rule_format] :
+  "\<forall>x m. length x = n + m \<longrightarrow> length y = n + m \<longrightarrow>
+    drop m x = replicate n False \<longrightarrow> take m y = replicate m False \<longrightarrow>
+    map2 (\<and>) x y = replicate (n + m) False"
+  apply (induct y)
+   apply force
+  apply clarsimp
+  apply (case_tac x)
+   apply force
+  apply (case_tac m)
+  apply auto
+  apply (drule_tac t="length xs" for xs in sym)
+  apply (auto simp: zip_replicate o_def map_replicate_const)
+  done
+
+
+subsubsection \<open>Mask\<close>
+
+lemma minus_1_eq_mask:
+  \<open>- 1 = (mask LENGTH('a) :: 'a::len word)\<close>
+  by (rule bit_eqI) (simp add: bit_exp_iff bit_mask_iff exp_eq_zero_iff)
+
+lemma mask_eq_decr_exp:
+  \<open>mask n = 2 ^ n - (1 :: 'a::len word)\<close>
+  by (fact mask_eq_exp_minus_1)
+
+lemma mask_Suc_rec:
+  \<open>mask (Suc n) = 2 * mask n + (1 :: 'a::len word)\<close>
+  by (simp add: mask_eq_exp_minus_1)
+
+context
+begin
+
+qualified lemma bit_mask_iff:
+  \<open>bit (mask m :: 'a::len word) n \<longleftrightarrow> n < min LENGTH('a) m\<close>
+  by (simp add: bit_mask_iff exp_eq_zero_iff not_le)
+
+end
+
+lemma mask_bin: "mask n = word_of_int (take_bit n (- 1))"
+  by transfer (simp add: take_bit_minus_one_eq_mask) 
+
+lemma and_mask_bintr: "w AND mask n = word_of_int (take_bit n (uint w))"
+  by transfer (simp add: ac_simps take_bit_eq_mask)
+
+lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (take_bit n i)"
+  by (auto simp add: and_mask_bintr min_def not_le wi_bintr)
+
+lemma and_mask_wi':
+  "word_of_int i AND mask n = (word_of_int (take_bit (min LENGTH('a) n) i) :: 'a::len word)"
+  by (auto simp add: and_mask_wi min_def wi_bintr)
+
+lemma and_mask_no: "numeral i AND mask n = word_of_int (take_bit n (numeral i))"
+  unfolding word_numeral_alt by (rule and_mask_wi)
+
+lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)"
+  by (simp only: and_mask_bintr take_bit_eq_mod)
+
+lemma uint_mask_eq:
+  \<open>uint (mask n :: 'a::len word) = mask (min LENGTH('a) n)\<close>
+  by transfer simp
+
+lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n"
+  apply (simp flip: take_bit_eq_mask)
+  apply transfer
+  apply (auto simp add: min_def)
+  using antisym_conv take_bit_int_eq_self_iff by fastforce
+
+lemma mask_eq_iff: "w AND mask n = w \<longleftrightarrow> uint w < 2 ^ n"
+  apply (auto simp flip: take_bit_eq_mask)
+   apply (metis take_bit_int_eq_self_iff uint_take_bit_eq)
+  apply (simp add: take_bit_int_eq_self unsigned_take_bit_eq word_uint_eqI)
+  done
+
+lemma and_mask_dvd: "2 ^ n dvd uint w \<longleftrightarrow> w AND mask n = 0"
+  by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 uint_0_iff)
+
+lemma and_mask_dvd_nat: "2 ^ n dvd unat w \<longleftrightarrow> w AND mask n = 0"
+  by (simp flip: take_bit_eq_mask take_bit_eq_mod unsigned_take_bit_eq add: dvd_eq_mod_eq_0 unat_0_iff uint_0_iff)
+
+lemma word_2p_lem: "n < size w \<Longrightarrow> w < 2 ^ n = (uint w < 2 ^ n)"
+  for w :: "'a::len word"
+  by transfer simp
+
+lemma less_mask_eq: "x < 2 ^ n \<Longrightarrow> x AND mask n = x"
+  for x :: "'a::len word"
+  apply (cases \<open>n < LENGTH('a)\<close>)
+   apply (simp_all add: not_less flip: take_bit_eq_mask exp_eq_zero_iff)
+  apply transfer
+  apply (simp add: min_def)
+  apply (metis min_def nat_less_le take_bit_int_eq_self_iff take_bit_take_bit)
+  done
+
+lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]]
+
+lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size]
+
+lemma and_mask_less_size: "n < size x \<Longrightarrow> x AND mask n < 2 ^ n"
+  for x :: \<open>'a::len word\<close>
+  unfolding word_size by (erule and_mask_less')
+
+lemma word_mod_2p_is_mask [OF refl]: "c = 2 ^ n \<Longrightarrow> c > 0 \<Longrightarrow> x mod c = x AND mask n"
+  for c x :: "'a::len word"
+  by (auto simp: word_mod_def uint_2p and_mask_mod_2p)
+
+lemma mask_eqs:
+  "(a AND mask n) + b AND mask n = a + b AND mask n"
+  "a + (b AND mask n) AND mask n = a + b AND mask n"
+  "(a AND mask n) - b AND mask n = a - b AND mask n"
+  "a - (b AND mask n) AND mask n = a - b AND mask n"
+  "a * (b AND mask n) AND mask n = a * b AND mask n"
+  "(b AND mask n) * a AND mask n = b * a AND mask n"
+  "(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n"
+  "(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n"
+  "(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n"
+  "- (a AND mask n) AND mask n = - a AND mask n"
+  "word_succ (a AND mask n) AND mask n = word_succ a AND mask n"
+  "word_pred (a AND mask n) AND mask n = word_pred a AND mask n"
+  using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b]
+             apply (auto simp flip: take_bit_eq_mask)
+             apply transfer
+             apply (simp add: take_bit_eq_mod mod_simps)
+            apply transfer
+            apply (simp add: take_bit_eq_mod mod_simps)
+           apply transfer
+           apply (simp add: take_bit_eq_mod mod_simps)
+          apply transfer
+          apply (simp add: take_bit_eq_mod mod_simps)
+         apply transfer
+         apply (simp add: take_bit_eq_mod mod_simps)
+        apply transfer
+        apply (simp add: take_bit_eq_mod mod_simps)
+       apply transfer
+       apply (simp add: take_bit_eq_mod mod_simps)
+      apply transfer
+      apply (simp add: take_bit_eq_mod mod_simps)
+     apply transfer
+     apply (simp add: take_bit_eq_mod mod_simps)
+    apply transfer
+    apply (simp add: take_bit_eq_mod mod_simps)
+   apply transfer
+   apply (simp add: take_bit_eq_mod mod_simps)
+  apply transfer
+  apply (simp add: take_bit_eq_mod mod_simps)
+  done
+
+lemma mask_power_eq: "(x AND mask n) ^ k AND mask n = x ^ k AND mask n"
+  for x :: \<open>'a::len word\<close>
+  using word_of_int_Ex [where x=x]
+  apply (auto simp flip: take_bit_eq_mask)
+  apply transfer
+  apply (simp add: take_bit_eq_mod mod_simps)
+  done
+
+lemma mask_full [simp]: "mask LENGTH('a) = (- 1 :: 'a::len word)"
+  by transfer (simp add: take_bit_minus_one_eq_mask)
+
+
+subsubsection \<open>Slices\<close>
+
+definition slice1 :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>slice1 n w = (if n < LENGTH('a)
+    then ucast (drop_bit (LENGTH('a) - n) w)
+    else push_bit (n - LENGTH('a)) (ucast w))\<close>
+
+lemma bit_slice1_iff:
+  \<open>bit (slice1 m w :: 'b::len word) n \<longleftrightarrow> m - LENGTH('a) \<le> n \<and> n < min LENGTH('b) m
+    \<and> bit w (n + (LENGTH('a) - m) - (m - LENGTH('a)))\<close>
+  for w :: \<open>'a::len word\<close>
+  by (auto simp add: slice1_def bit_ucast_iff bit_drop_bit_eq bit_push_bit_iff exp_eq_zero_iff not_less not_le ac_simps
+    dest: bit_imp_le_length)
+
+definition slice :: \<open>nat \<Rightarrow> 'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>slice n = slice1 (LENGTH('a) - n)\<close>
+
+lemma bit_slice_iff:
+  \<open>bit (slice m w :: 'b::len word) n \<longleftrightarrow> n < min LENGTH('b) (LENGTH('a) - m) \<and> bit w (n + LENGTH('a) - (LENGTH('a) - m))\<close>
+  for w :: \<open>'a::len word\<close>
+  by (simp add: slice_def word_size bit_slice1_iff)
+
+lemma slice1_0 [simp] : "slice1 n 0 = 0"
+  unfolding slice1_def by simp
+
+lemma slice_0 [simp] : "slice n 0 = 0"
+  unfolding slice_def by auto
+
+lemma ucast_slice1: "ucast w = slice1 (size w) w"
+  apply (simp add: slice1_def)
+  apply transfer
+  apply simp
+  done
+
+lemma ucast_slice: "ucast w = slice 0 w"
+  by (simp add: slice_def slice1_def)
+
+lemma slice_id: "slice 0 t = t"
+  by (simp only: ucast_slice [symmetric] ucast_id)
+
+lemma rev_slice1:
+  \<open>slice1 n (word_reverse w :: 'b::len word) = word_reverse (slice1 k w :: 'a::len word)\<close>
+  if \<open>n + k = LENGTH('a) + LENGTH('b)\<close>
+proof (rule bit_word_eqI)
+  fix m
+  assume *: \<open>m < LENGTH('a)\<close>
+  from that have **: \<open>LENGTH('b) = n + k - LENGTH('a)\<close>
+    by simp
+  show \<open>bit (slice1 n (word_reverse w :: 'b word) :: 'a word) m \<longleftrightarrow> bit (word_reverse (slice1 k w :: 'a word)) m\<close>
+    apply (simp add: bit_slice1_iff bit_word_reverse_iff)
+    using * **
+    apply (cases \<open>n \<le> LENGTH('a)\<close>; cases \<open>k \<le> LENGTH('a)\<close>)
+       apply auto
+    done
+qed
+
+lemma rev_slice:
+  "n + k + LENGTH('a::len) = LENGTH('b::len) \<Longrightarrow>
+    slice n (word_reverse (w::'b word)) = word_reverse (slice k w :: 'a word)"
+  apply (unfold slice_def word_size)
+  apply (rule rev_slice1)
+  apply arith
+  done
+
+
+subsubsection \<open>Revcast\<close>
+
+definition revcast :: \<open>'a::len word \<Rightarrow> 'b::len word\<close>
+  where \<open>revcast = slice1 LENGTH('b)\<close>
+
+lemma bit_revcast_iff:
+  \<open>bit (revcast w :: 'b::len word) n \<longleftrightarrow> LENGTH('b) - LENGTH('a) \<le> n \<and> n < LENGTH('b)
+    \<and> bit w (n + (LENGTH('a) - LENGTH('b)) - (LENGTH('b) - LENGTH('a)))\<close>
+  for w :: \<open>'a::len word\<close>
+  by (simp add: revcast_def bit_slice1_iff)
+
+lemma revcast_slice1 [OF refl]: "rc = revcast w \<Longrightarrow> slice1 (size rc) w = rc"
+  by (simp add: revcast_def word_size)
+
+lemma revcast_rev_ucast [OF refl refl refl]:
+  "cs = [rc, uc] \<Longrightarrow> rc = revcast (word_reverse w) \<Longrightarrow> uc = ucast w \<Longrightarrow>
+    rc = word_reverse uc"
+  apply auto
+  apply (rule bit_word_eqI)
+  apply (cases \<open>LENGTH('a) \<le> LENGTH('b)\<close>)
+   apply (simp_all add: bit_revcast_iff bit_word_reverse_iff bit_ucast_iff not_le
+     bit_imp_le_length)
+  using bit_imp_le_length apply fastforce
+  using bit_imp_le_length apply fastforce
+  done
+
+lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))"
+  using revcast_rev_ucast [of "word_reverse w"] by simp
+
+lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))"
+  by (fact revcast_rev_ucast [THEN word_rev_gal'])
+
+lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)"
+  by (fact revcast_ucast [THEN word_rev_gal'])
+
+
+text "linking revcast and cast via shift"
+
+lemmas wsst_TYs = source_size target_size word_size
+
+lemmas sym_notr =
+  not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]]
+
+
+subsection \<open>Split and cat\<close>
+
+lemmas word_split_bin' = word_split_def
+lemmas word_cat_bin' = word_cat_eq
+
+\<comment> \<open>this odd result is analogous to \<open>ucast_id\<close>,
+      result to the length given by the result type\<close>
+
+lemma word_cat_id: "word_cat a b = b"
+  by transfer (simp add: take_bit_concat_bit_eq)
+
+lemma word_cat_split_alt: "size w \<le> size u + size v \<Longrightarrow> word_split w = (u, v) \<Longrightarrow> word_cat u v = w"
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_word_cat_iff not_less word_size word_split_def bit_ucast_iff bit_drop_bit_eq)
+  done
+
+lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]]
+
+
+subsubsection \<open>Split and slice\<close>
+
+lemma split_slices: "word_split w = (u, v) \<Longrightarrow> u = slice (size v) w \<and> v = slice 0 w"
+  apply (auto simp add: word_split_def word_size)
+   apply (rule bit_word_eqI)
+   apply (simp add: bit_slice_iff bit_ucast_iff bit_drop_bit_eq)
+   apply (cases \<open>LENGTH('c) \<ge> LENGTH('b)\<close>)
+    apply (auto simp add: ac_simps dest: bit_imp_le_length)
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_slice_iff bit_ucast_iff dest: bit_imp_le_length)
+  done
+
+lemma slice_cat1 [OF refl]:
+  "wc = word_cat a b \<Longrightarrow> size wc >= size a + size b \<Longrightarrow> slice (size b) wc = a"
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_slice_iff bit_word_cat_iff word_size)
+  done
+
+lemmas slice_cat2 = trans [OF slice_id word_cat_id]
+
+lemma cat_slices:
+  "a = slice n c \<Longrightarrow> b = slice 0 c \<Longrightarrow> n = size b \<Longrightarrow>
+    size a + size b >= size c \<Longrightarrow> word_cat a b = c"
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_slice_iff bit_word_cat_iff word_size)
+  done
+
+lemma word_split_cat_alt:
+  "w = word_cat u v \<Longrightarrow> size u + size v \<le> size w \<Longrightarrow> word_split w = (u, v)"
+  apply (auto simp add: word_split_def word_size)
+   apply (rule bit_eqI)
+   apply (auto simp add: bit_ucast_iff bit_drop_bit_eq bit_word_cat_iff dest: bit_imp_le_length)
+  apply (rule bit_eqI)
+   apply (auto simp add: bit_ucast_iff bit_drop_bit_eq bit_word_cat_iff dest: bit_imp_le_length)
+  done
+
+lemma horner_sum_uint_exp_Cons_eq:
+  \<open>horner_sum uint (2 ^ LENGTH('a)) (w # ws) =
+    concat_bit LENGTH('a) (uint w) (horner_sum uint (2 ^ LENGTH('a)) ws)\<close>
+  for ws :: \<open>'a::len word list\<close>
+  apply (simp add: concat_bit_eq push_bit_eq_mult)
+  apply transfer
+  apply simp
+  done
+
+lemma bit_horner_sum_uint_exp_iff:
+  \<open>bit (horner_sum uint (2 ^ LENGTH('a)) ws) n \<longleftrightarrow>
+    n div LENGTH('a) < length ws \<and> bit (ws ! (n div LENGTH('a))) (n mod LENGTH('a))\<close>
+  for ws :: \<open>'a::len word list\<close>
+proof (induction ws arbitrary: n)
+  case Nil
+  then show ?case
+    by simp
+next
+  case (Cons w ws)
+  then show ?case
+    by (cases \<open>n \<ge> LENGTH('a)\<close>)
+      (simp_all only: horner_sum_uint_exp_Cons_eq, simp_all add: bit_concat_bit_iff le_div_geq le_mod_geq bit_uint_iff Cons)
+qed
+
+
+subsection \<open>Rotation\<close>
+
+lemma word_rotr_word_rotr_eq:
+  \<open>word_rotr m (word_rotr n w) = word_rotr (m + n) w\<close>
+  by (rule bit_word_eqI) (simp add: bit_word_rotr_iff ac_simps mod_add_right_eq)
+
+lemma word_rot_rl [simp]:
+  \<open>word_rotl k (word_rotr k v) = v\<close>
+  apply (rule bit_word_eqI)
+  apply (simp add: word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps)
+  apply (auto dest: bit_imp_le_length)
+   apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_if mod_mult_self2_is_0)
+  apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_less mod_mult_self2_is_0)
+  done
+
+lemma word_rot_lr [simp]:
+  \<open>word_rotr k (word_rotl k v) = v\<close>
+  apply (rule bit_word_eqI)
+  apply (simp add: word_rotl_eq_word_rotr word_rotr_word_rotr_eq bit_word_rotr_iff algebra_simps)
+  apply (auto dest: bit_imp_le_length)
+   apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_if mod_mult_self2_is_0)
+  apply (metis (no_types, lifting) add.right_neutral add_diff_cancel_right' div_mult_mod_eq mod_add_right_eq mod_add_self2 mod_less mod_mult_self2_is_0)
+  done
+
+lemma word_rot_gal:
+  \<open>word_rotr n v = w \<longleftrightarrow> word_rotl n w = v\<close>
+  by auto
+
+lemma word_rot_gal':
+  \<open>w = word_rotr n v \<longleftrightarrow> v = word_rotl n w\<close>
+  by auto
+
+lemma word_rotr_rev:
+  \<open>word_rotr n w = word_reverse (word_rotl n (word_reverse w))\<close>
+proof (rule bit_word_eqI)
+  fix m
+  assume \<open>m < LENGTH('a)\<close>
+  moreover have \<open>1 +
+    ((int m + int n mod int LENGTH('a)) mod int LENGTH('a) +
+     ((int LENGTH('a) * 2) mod int LENGTH('a) - (1 + (int m + int n mod int LENGTH('a)))) mod int LENGTH('a)) =
+    int LENGTH('a)\<close>
+    apply (cases \<open>(1 + (int m + int n mod int LENGTH('a))) mod
+         int LENGTH('a) = 0\<close>)
+    using zmod_zminus1_eq_if [of \<open>1 + (int m + int n mod int LENGTH('a))\<close> \<open>int LENGTH('a)\<close>]
+    apply simp_all
+     apply (auto simp add: algebra_simps)
+     apply (simp add: minus_equation_iff [of \<open>int m\<close>])
+     apply (drule sym [of _ \<open>int m\<close>])
+    apply simp
+    apply (metis add.commute add_minus_cancel diff_minus_eq_add len_gt_0 less_imp_of_nat_less less_nat_zero_code mod_mult_self3 of_nat_gt_0 zmod_minus1)
+    apply (metis (no_types, hide_lams) Abs_fnat_hom_add less_not_refl mod_Suc of_nat_Suc of_nat_gt_0 of_nat_mod)
+    done
+  then have \<open>int ((m + n) mod LENGTH('a)) =
+    int (LENGTH('a) - Suc ((LENGTH('a) - Suc m + LENGTH('a) - n mod LENGTH('a)) mod LENGTH('a)))\<close>
+    using \<open>m < LENGTH('a)\<close>
+    by (simp only: of_nat_mod mod_simps)
+      (simp add: of_nat_diff of_nat_mod Suc_le_eq add_less_mono algebra_simps mod_simps)
+  then have \<open>(m + n) mod LENGTH('a) =
+    LENGTH('a) - Suc ((LENGTH('a) - Suc m + LENGTH('a) - n mod LENGTH('a)) mod LENGTH('a))\<close>
+    by simp
+  ultimately show \<open>bit (word_rotr n w) m \<longleftrightarrow> bit (word_reverse (word_rotl n (word_reverse w))) m\<close>
+    by (simp add: word_rotl_eq_word_rotr bit_word_rotr_iff bit_word_reverse_iff)
+qed
+
+lemma word_roti_0 [simp]: "word_roti 0 w = w"
+  by transfer simp
+
+lemma word_roti_add: "word_roti (m + n) w = word_roti m (word_roti n w)"
+  by (rule bit_word_eqI)
+    (simp add: bit_word_roti_iff nat_less_iff mod_simps ac_simps)
+
+lemma word_roti_conv_mod':
+  "word_roti n w = word_roti (n mod int (size w)) w"
+  by transfer simp
+
+lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size]
+
+
+subsubsection \<open>"Word rotation commutes with bit-wise operations\<close>
+
+\<comment> \<open>using locale to not pollute lemma namespace\<close>
+locale word_rotate
+begin
+
+lemma word_rot_logs:
+  "word_rotl n (NOT v) = NOT (word_rotl n v)"
+  "word_rotr n (NOT v) = NOT (word_rotr n v)"
+  "word_rotl n (x AND y) = word_rotl n x AND word_rotl n y"
+  "word_rotr n (x AND y) = word_rotr n x AND word_rotr n y"
+  "word_rotl n (x OR y) = word_rotl n x OR word_rotl n y"
+  "word_rotr n (x OR y) = word_rotr n x OR word_rotr n y"
+  "word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y"
+  "word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y"
+         apply (rule bit_word_eqI)
+         apply (auto simp add: bit_word_rotl_iff bit_not_iff algebra_simps exp_eq_zero_iff not_le)
+        apply (rule bit_word_eqI)
+        apply (auto simp add: bit_word_rotr_iff bit_not_iff algebra_simps exp_eq_zero_iff not_le)
+       apply (rule bit_word_eqI)
+       apply (auto simp add: bit_word_rotl_iff bit_and_iff algebra_simps exp_eq_zero_iff not_le)
+      apply (rule bit_word_eqI)
+      apply (auto simp add: bit_word_rotr_iff bit_and_iff algebra_simps exp_eq_zero_iff not_le)
+     apply (rule bit_word_eqI)
+     apply (auto simp add: bit_word_rotl_iff bit_or_iff algebra_simps exp_eq_zero_iff not_le)
+    apply (rule bit_word_eqI)
+    apply (auto simp add: bit_word_rotr_iff bit_or_iff algebra_simps exp_eq_zero_iff not_le)
+   apply (rule bit_word_eqI)
+   apply (auto simp add: bit_word_rotl_iff bit_xor_iff algebra_simps exp_eq_zero_iff not_le)
+  apply (rule bit_word_eqI)
+  apply (auto simp add: bit_word_rotr_iff bit_xor_iff algebra_simps exp_eq_zero_iff not_le)
+  done
+
+end
+
+lemmas word_rot_logs = word_rotate.word_rot_logs
+
+lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 \<and> word_rotl i 0 = 0"
+  by transfer simp_all
+
+lemma word_roti_0' [simp] : "word_roti n 0 = 0"
+  by transfer simp
+
+declare word_roti_eq_word_rotr_word_rotl [simp]
+
+
+subsection \<open>Maximum machine word\<close>
+
+lemma word_int_cases:
+  fixes x :: "'a::len word"
+  obtains n where "x = word_of_int n" and "0 \<le> n" and "n < 2^LENGTH('a)"
+  by (rule that [of \<open>uint x\<close>]) simp_all
+
+lemma word_nat_cases [cases type: word]:
+  fixes x :: "'a::len word"
+  obtains n where "x = of_nat n" and "n < 2^LENGTH('a)"
+  by (rule that [of \<open>unat x\<close>]) simp_all
+
+lemma max_word_max [intro!]: "n \<le> max_word"
+  by (fact word_order.extremum)
+
+lemma word_of_int_2p_len: "word_of_int (2 ^ LENGTH('a)) = (0::'a::len word)"
+  by simp
+
+lemma word_pow_0: "(2::'a::len word) ^ LENGTH('a) = 0"
+  by (fact word_exp_length_eq_0)
+
+lemma max_word_wrap: "x + 1 = 0 \<Longrightarrow> x = max_word"
+  by (simp add: eq_neg_iff_add_eq_0)
+
+lemma word_and_max: "x AND max_word = x"
+  by (fact word_log_esimps)
+
+lemma word_or_max: "x OR max_word = max_word"
+  by (fact word_log_esimps)
+
+lemma word_ao_dist2: "x AND (y OR z) = x AND y OR x AND z"
+  for x y z :: "'a::len word"
+  by (fact bit.conj_disj_distrib)
+
+lemma word_oa_dist2: "x OR y AND z = (x OR y) AND (x OR z)"
+  for x y z :: "'a::len word"
+  by (fact bit.disj_conj_distrib)
+
+lemma word_and_not [simp]: "x AND NOT x = 0"
+  for x :: "'a::len word"
+  by (fact bit.conj_cancel_right)
+
+lemma word_or_not [simp]: "x OR NOT x = max_word"
+  by (fact bit.disj_cancel_right)
+
+lemma word_xor_and_or: "x XOR y = x AND NOT y OR NOT x AND y"
+  for x y :: "'a::len word"
+  by (fact bit.xor_def)
+
+lemma uint_lt_0 [simp]: "uint x < 0 = False"
+  by (simp add: linorder_not_less)
+
+lemma shiftr1_1 [simp]: "shiftr1 (1::'a::len word) = 0"
+  by transfer simp
+
+lemma word_less_1 [simp]: "x < 1 \<longleftrightarrow> x = 0"
+  for x :: "'a::len word"
+  by (simp add: word_less_nat_alt unat_0_iff)
+
+lemma uint_plus_if_size:
+  "uint (x + y) =
+    (if uint x + uint y < 2^size x
+     then uint x + uint y
+     else uint x + uint y - 2^size x)"
+  apply (simp only: word_arith_wis word_size uint_word_of_int_eq)
+  apply (auto simp add: not_less take_bit_int_eq_self_iff)
+  apply (metis not_less take_bit_eq_mod uint_plus_if' uint_word_ariths(1))
+  done
+
+lemma unat_plus_if_size:
+  "unat (x + y) =
+    (if unat x + unat y < 2^size x
+     then unat x + unat y
+     else unat x + unat y - 2^size x)"
+  for x y :: "'a::len word"
+  apply (subst word_arith_nat_defs)
+  apply (subst unat_of_nat)
+  apply (auto simp add: not_less word_size)
+  apply (metis not_le unat_plus_if' unat_word_ariths(1))
+  done
+
+lemma word_neq_0_conv: "w \<noteq> 0 \<longleftrightarrow> 0 < w"
+  for w :: "'a::len word"
+  by (fact word_coorder.not_eq_extremum)
+
+lemma max_lt: "unat (max a b div c) = unat (max a b) div unat c"
+  for c :: "'a::len word"
+  by (fact unat_div)
+
+lemma uint_sub_if_size:
+  "uint (x - y) =
+    (if uint y \<le> uint x
+     then uint x - uint y
+     else uint x - uint y + 2^size x)"
+  apply (simp only: word_arith_wis word_size uint_word_of_int_eq)
+  apply (auto simp add: take_bit_int_eq_self_iff not_le)
+  apply (metis not_less uint_sub_if' uint_word_arith_bintrs(2))
+  done
+
+lemma unat_sub:
+  \<open>unat (a - b) = unat a - unat b\<close>
+  if \<open>b \<le> a\<close>
+proof -
+  from that have \<open>unat b \<le> unat a\<close>
+    by transfer simp
+  with that show ?thesis
+    apply transfer
+    apply simp
+    apply (subst take_bit_diff [symmetric])
+    apply (subst nat_take_bit_eq)
+     apply (simp add: nat_le_eq_zle)
+    apply (simp add: nat_diff_distrib take_bit_nat_eq_self_iff less_imp_diff_less)
+    done
+qed
+
+lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "numeral w"] for w
+lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "numeral w"] for w
+
+lemma word_of_int_minus: "word_of_int (2^LENGTH('a) - i) = (word_of_int (-i)::'a::len word)"
+  apply transfer
+  apply (subst take_bit_diff [symmetric])
+  apply (simp add: take_bit_minus)
+  done
+
+lemma word_of_int_inj:
+  \<open>(word_of_int x :: 'a::len word) = word_of_int y \<longleftrightarrow> x = y\<close>
+  if \<open>0 \<le> x \<and> x < 2 ^ LENGTH('a)\<close> \<open>0 \<le> y \<and> y < 2 ^ LENGTH('a)\<close>
+  using that by (transfer fixing: x y) (simp add: take_bit_int_eq_self) 
+
+lemma word_le_less_eq: "x \<le> y \<longleftrightarrow> x = y \<or> x < y"
+  for x y :: "'z::len word"
+  by (auto simp add: order_class.le_less)
+
+lemma mod_plus_cong:
+  fixes b b' :: int
+  assumes 1: "b = b'"
+    and 2: "x mod b' = x' mod b'"
+    and 3: "y mod b' = y' mod b'"
+    and 4: "x' + y' = z'"
+  shows "(x + y) mod b = z' mod b'"
+proof -
+  from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'"
+    by (simp add: mod_add_eq)
+  also have "\<dots> = (x' + y') mod b'"
+    by (simp add: mod_add_eq)
+  finally show ?thesis
+    by (simp add: 4)
+qed
+
+lemma mod_minus_cong:
+  fixes b b' :: int
+  assumes "b = b'"
+    and "x mod b' = x' mod b'"
+    and "y mod b' = y' mod b'"
+    and "x' - y' = z'"
+  shows "(x - y) mod b = z' mod b'"
+  using assms [symmetric] by (auto intro: mod_diff_cong)
+
+lemma word_induct_less:
+  \<open>P m\<close> if zero: \<open>P 0\<close> and less: \<open>\<And>n. n < m \<Longrightarrow> P n \<Longrightarrow> P (1 + n)\<close>
+  for m :: \<open>'a::len word\<close>
+proof -
+  define q where \<open>q = unat m\<close>
+  with less have \<open>\<And>n. n < word_of_nat q \<Longrightarrow> P n \<Longrightarrow> P (1 + n)\<close>
+    by simp
+  then have \<open>P (word_of_nat q :: 'a word)\<close>
+  proof (induction q)
+    case 0
+    show ?case
+      by (simp add: zero)
+  next
+    case (Suc q)
+    show ?case
+    proof (cases \<open>1 + word_of_nat q = (0 :: 'a word)\<close>)
+      case True
+      then show ?thesis
+        by (simp add: zero)
+    next
+      case False
+      then have *: \<open>word_of_nat q < (word_of_nat (Suc q) :: 'a word)\<close>
+        by (simp add: unatSuc word_less_nat_alt)
+      then have **: \<open>n < (1 + word_of_nat q :: 'a word) \<longleftrightarrow> n \<le> (word_of_nat q :: 'a word)\<close> for n
+        by (metis (no_types, lifting) add.commute inc_le le_less_trans not_less of_nat_Suc)
+      have \<open>P (word_of_nat q)\<close>
+        apply (rule Suc.IH)
+        apply (rule Suc.prems)
+         apply (erule less_trans)
+         apply (rule *)
+        apply assumption
+        done
+      with * have \<open>P (1 + word_of_nat q)\<close>
+        by (rule Suc.prems)
+      then show ?thesis
+        by simp
+    qed
+  qed
+  with \<open>q = unat m\<close> show ?thesis
+    by simp
+qed
+
+lemma word_induct: "P 0 \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (1 + n)) \<Longrightarrow> P m"
+  for P :: "'a::len word \<Rightarrow> bool"
+  by (rule word_induct_less)
+
+lemma word_induct2 [induct type]: "P 0 \<Longrightarrow> (\<And>n. 1 + n \<noteq> 0 \<Longrightarrow> P n \<Longrightarrow> P (1 + n)) \<Longrightarrow> P n"
+  for P :: "'b::len word \<Rightarrow> bool"
+  apply (rule word_induct_less)
+   apply simp_all
+  apply (case_tac "1 + na = 0")
+   apply auto
+  done
+
+
+subsection \<open>Recursion combinator for words\<close>
+
+definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a"
+  where "word_rec forZero forSuc n = rec_nat forZero (forSuc \<circ> of_nat) (unat n)"
+
+lemma word_rec_0: "word_rec z s 0 = z"
+  by (simp add: word_rec_def)
+
+lemma word_rec_Suc: "1 + n \<noteq> 0 \<Longrightarrow> word_rec z s (1 + n) = s n (word_rec z s n)"
+  for n :: "'a::len word"
+  apply (auto simp add: word_rec_def unat_word_ariths)
+  apply (metis (mono_tags, lifting) Abs_fnat_hom_add add_diff_cancel_left' o_def of_nat_1 old.nat.simps(7) plus_1_eq_Suc unatSuc unat_word_ariths(1) unsigned_1 word_arith_nat_add)
+  done
+
+lemma word_rec_Pred: "n \<noteq> 0 \<Longrightarrow> word_rec z s n = s (n - 1) (word_rec z s (n - 1))"
+  apply (rule subst[where t="n" and s="1 + (n - 1)"])
+   apply simp
+  apply (subst word_rec_Suc)
+   apply simp
+  apply simp
+  done
+
+lemma word_rec_in: "f (word_rec z (\<lambda>_. f) n) = word_rec (f z) (\<lambda>_. f) n"
+  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
+
+lemma word_rec_in2: "f n (word_rec z f n) = word_rec (f 0 z) (f \<circ> (+) 1) n"
+  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
+
+lemma word_rec_twice:
+  "m \<le> n \<Longrightarrow> word_rec z f n = word_rec (word_rec z f (n - m)) (f \<circ> (+) (n - m)) m"
+  apply (erule rev_mp)
+  apply (rule_tac x=z in spec)
+  apply (rule_tac x=f in spec)
+  apply (induct n)
+   apply (simp add: word_rec_0)
+  apply clarsimp
+  apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst)
+   apply simp
+  apply (case_tac "1 + (n - m) = 0")
+   apply (simp add: word_rec_0)
+   apply (rule_tac f = "word_rec a b" for a b in arg_cong)
+   apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst)
+    apply simp
+   apply (simp (no_asm_use))
+  apply (simp add: word_rec_Suc word_rec_in2)
+  apply (erule impE)
+   apply uint_arith
+  apply (drule_tac x="x \<circ> (+) 1" in spec)
+  apply (drule_tac x="x 0 xa" in spec)
+  apply simp
+  apply (rule_tac t="\<lambda>a. x (1 + (n - m + a))" and s="\<lambda>a. x (1 + (n - m) + a)" in subst)
+   apply (clarsimp simp add: fun_eq_iff)
+   apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst)
+    apply simp
+   apply (rule refl)
+  apply (rule refl)
+  done
+
+lemma word_rec_id: "word_rec z (\<lambda>_. id) n = z"
+  by (induct n) (auto simp add: word_rec_0 word_rec_Suc)
+
+lemma word_rec_id_eq: "\<forall>m < n. f m = id \<Longrightarrow> word_rec z f n = z"
+  apply (erule rev_mp)
+  apply (induct n)
+   apply (auto simp add: word_rec_0 word_rec_Suc)
+   apply (drule spec, erule mp)
+   apply uint_arith
+  apply (drule_tac x=n in spec, erule impE)
+   apply uint_arith
+  apply simp
+  done
+
+lemma word_rec_max:
+  "\<forall>m\<ge>n. m \<noteq> - 1 \<longrightarrow> f m = id \<Longrightarrow> word_rec z f (- 1) = word_rec z f n"
+  apply (subst word_rec_twice[where n="-1" and m="-1 - n"])
+   apply simp
+  apply simp
+  apply (rule word_rec_id_eq)
+  apply clarsimp
+  apply (drule spec, rule mp, erule mp)
+   apply (rule word_plus_mono_right2[OF _ order_less_imp_le])
+    prefer 2
+    apply assumption
+   apply simp
+  apply (erule contrapos_pn)
+  apply simp
+  apply (drule arg_cong[where f="\<lambda>x. x - n"])
+  apply simp
+  done
+
+
+subsection \<open>More\<close>
+
+lemma mask_1: "mask 1 = 1"
+  by simp
+
+lemma mask_Suc_0: "mask (Suc 0) = 1"
+  by simp
+
+lemma bin_last_bintrunc: "odd (take_bit l n) \<longleftrightarrow> l > 0 \<and> odd n"
+  by simp
+
+
+lemma push_bit_word_beyond [simp]:
+  \<open>push_bit n w = 0\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close>
+  using that by (transfer fixing: n) (simp add: take_bit_push_bit)
+
+lemma drop_bit_word_beyond [simp]:
+  \<open>drop_bit n w = 0\<close> if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close>
+  using that by (transfer fixing: n) (simp add: drop_bit_take_bit)
+
+lemma signed_drop_bit_beyond:
+  \<open>signed_drop_bit n w = (if bit w (LENGTH('a) - Suc 0) then - 1 else 0)\<close>
+  if \<open>LENGTH('a) \<le> n\<close> for w :: \<open>'a::len word\<close>
+  by (rule bit_word_eqI) (simp add: bit_signed_drop_bit_iff that)
+
+
+subsection \<open>SMT support\<close>
+
+ML_file \<open>Tools/smt_word.ML\<close>
+
+end