src/HOL/Metis_Examples/Binary_Tree.thy
changeset 43197 c71657bbdbc0
parent 42103 6066a35f6678
child 45502 6246bef495ff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Metis_Examples/Binary_Tree.thy	Mon Jun 06 20:36:35 2011 +0200
@@ -0,0 +1,278 @@
+(*  Title:      HOL/Metis_Examples/Binary_Tree.thy
+    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Metis example featuring binary trees.
+*)
+
+header {* Metis Example Featuring Binary Trees *}
+
+theory Binary_Tree
+imports Main
+begin
+
+declare [[metis_new_skolemizer]]
+
+datatype 'a bt =
+    Lf
+  | Br 'a  "'a bt"  "'a bt"
+
+primrec n_nodes :: "'a bt => nat" where
+  "n_nodes Lf = 0"
+| "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)"
+
+primrec n_leaves :: "'a bt => nat" where
+  "n_leaves Lf = Suc 0"
+| "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2"
+
+primrec depth :: "'a bt => nat" where
+  "depth Lf = 0"
+| "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))"
+
+primrec reflect :: "'a bt => 'a bt" where
+  "reflect Lf = Lf"
+| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)"
+
+primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where
+  "bt_map f Lf = Lf"
+| "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)"
+
+primrec preorder :: "'a bt => 'a list" where
+  "preorder Lf = []"
+| "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)"
+
+primrec inorder :: "'a bt => 'a list" where
+  "inorder Lf = []"
+| "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)"
+
+primrec postorder :: "'a bt => 'a list" where
+  "postorder Lf = []"
+| "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]"
+
+primrec append :: "'a bt => 'a bt => 'a bt" where
+  "append Lf t = t"
+| "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)"
+
+text {* \medskip BT simplification *}
+
+declare [[ sledgehammer_problem_prefix = "BT__n_leaves_reflect" ]]
+
+lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t"
+proof (induct t)
+  case Lf thus ?case
+  proof -
+    let "?p\<^isub>1 x\<^isub>1" = "x\<^isub>1 \<noteq> n_leaves (reflect (Lf::'a bt))"
+    have "\<not> ?p\<^isub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1))
+    hence "\<not> ?p\<^isub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1))
+    thus "n_leaves (reflect (Lf::'a bt)) = n_leaves (Lf::'a bt)" by metis
+  qed
+next
+  case (Br a t1 t2) thus ?case
+    by (metis n_leaves.simps(2) nat_add_commute reflect.simps(2))
+qed
+
+declare [[ sledgehammer_problem_prefix = "BT__n_nodes_reflect" ]]
+
+lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t"
+proof (induct t)
+  case Lf thus ?case by (metis reflect.simps(1))
+next
+  case (Br a t1 t2) thus ?case
+    by (metis add_commute n_nodes.simps(2) reflect.simps(2))
+qed
+
+declare [[ sledgehammer_problem_prefix = "BT__depth_reflect" ]]
+
+lemma depth_reflect: "depth (reflect t) = depth t"
+apply (induct t)
+ apply (metis depth.simps(1) reflect.simps(1))
+by (metis depth.simps(2) min_max.inf_sup_aci(5) reflect.simps(2))
+
+text {*
+The famous relationship between the numbers of leaves and nodes.
+*}
+
+declare [[ sledgehammer_problem_prefix = "BT__n_leaves_nodes" ]]
+
+lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)"
+apply (induct t)
+ apply (metis n_leaves.simps(1) n_nodes.simps(1))
+by auto
+
+declare [[ sledgehammer_problem_prefix = "BT__reflect_reflect_ident" ]]
+
+lemma reflect_reflect_ident: "reflect (reflect t) = t"
+apply (induct t)
+ apply (metis reflect.simps(1))
+proof -
+  fix a :: 'a and t1 :: "'a bt" and t2 :: "'a bt"
+  assume A1: "reflect (reflect t1) = t1"
+  assume A2: "reflect (reflect t2) = t2"
+  have "\<And>V U. reflect (Br U V (reflect t1)) = Br U t1 (reflect V)"
+    using A1 by (metis reflect.simps(2))
+  hence "\<And>V U. Br U t1 (reflect (reflect V)) = reflect (reflect (Br U t1 V))"
+    by (metis reflect.simps(2))
+  hence "\<And>U. reflect (reflect (Br U t1 t2)) = Br U t1 t2"
+    using A2 by metis
+  thus "reflect (reflect (Br a t1 t2)) = Br a t1 t2" by blast
+qed
+
+declare [[ sledgehammer_problem_prefix = "BT__bt_map_ident" ]]
+
+lemma bt_map_ident: "bt_map (%x. x) = (%y. y)"
+apply (rule ext)
+apply (induct_tac y)
+ apply (metis bt_map.simps(1))
+by (metis bt_map.simps(2))
+
+declare [[ sledgehammer_problem_prefix = "BT__bt_map_append" ]]
+
+lemma bt_map_append: "bt_map f (append t u) = append (bt_map f t) (bt_map f u)"
+apply (induct t)
+ apply (metis append.simps(1) bt_map.simps(1))
+by (metis append.simps(2) bt_map.simps(2))
+
+declare [[ sledgehammer_problem_prefix = "BT__bt_map_compose" ]]
+
+lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)"
+apply (induct t)
+ apply (metis bt_map.simps(1))
+by (metis bt_map.simps(2) o_eq_dest_lhs)
+
+declare [[ sledgehammer_problem_prefix = "BT__bt_map_reflect" ]]
+
+lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)"
+apply (induct t)
+ apply (metis bt_map.simps(1) reflect.simps(1))
+by (metis bt_map.simps(2) reflect.simps(2))
+
+declare [[ sledgehammer_problem_prefix = "BT__preorder_bt_map" ]]
+
+lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)"
+apply (induct t)
+ apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1))
+by simp
+
+declare [[ sledgehammer_problem_prefix = "BT__inorder_bt_map" ]]
+
+lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)"
+proof (induct t)
+  case Lf thus ?case
+  proof -
+    have "map f [] = []" by (metis map.simps(1))
+    hence "map f [] = inorder Lf" by (metis inorder.simps(1))
+    hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1))
+    thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1))
+  qed
+next
+  case (Br a t1 t2) thus ?case by simp
+qed
+
+declare [[ sledgehammer_problem_prefix = "BT__postorder_bt_map" ]]
+
+lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)"
+apply (induct t)
+ apply (metis Nil_is_map_conv bt_map.simps(1) postorder.simps(1))
+by simp
+
+declare [[ sledgehammer_problem_prefix = "BT__depth_bt_map" ]]
+
+lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t"
+apply (induct t)
+ apply (metis bt_map.simps(1) depth.simps(1))
+by simp
+
+declare [[ sledgehammer_problem_prefix = "BT__n_leaves_bt_map" ]]
+
+lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t"
+apply (induct t)
+ apply (metis bt_map.simps(1) n_leaves.simps(1))
+proof -
+  fix a :: 'b and t1 :: "'b bt" and t2 :: "'b bt"
+  assume A1: "n_leaves (bt_map f t1) = n_leaves t1"
+  assume A2: "n_leaves (bt_map f t2) = n_leaves t2"
+  have "\<And>V U. n_leaves (Br U (bt_map f t1) V) = n_leaves t1 + n_leaves V"
+    using A1 by (metis n_leaves.simps(2))
+  hence "\<And>V U. n_leaves (bt_map f (Br U t1 V)) = n_leaves t1 + n_leaves (bt_map f V)"
+    by (metis bt_map.simps(2))
+  hence F1: "\<And>U. n_leaves (bt_map f (Br U t1 t2)) = n_leaves t1 + n_leaves t2"
+    using A2 by metis
+  have "n_leaves t1 + n_leaves t2 = n_leaves (Br a t1 t2)"
+    by (metis n_leaves.simps(2))
+  thus "n_leaves (bt_map f (Br a t1 t2)) = n_leaves (Br a t1 t2)"
+    using F1 by metis
+qed
+
+declare [[ sledgehammer_problem_prefix = "BT__preorder_reflect" ]]
+
+lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)"
+apply (induct t)
+ apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)
+              reflect.simps(1))
+apply simp
+done
+
+declare [[ sledgehammer_problem_prefix = "BT__inorder_reflect" ]]
+
+lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)"
+apply (induct t)
+ apply (metis Nil_is_rev_conv inorder.simps(1) reflect.simps(1))
+by simp
+(* Slow:
+by (metis append.simps(1) append_eq_append_conv2 inorder.simps(2)
+          reflect.simps(2) rev.simps(2) rev_append)
+*)
+
+declare [[ sledgehammer_problem_prefix = "BT__postorder_reflect" ]]
+
+lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)"
+apply (induct t)
+ apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1)
+              reflect.simps(1))
+by (metis preorder_reflect reflect_reflect_ident rev_swap)
+
+text {*
+Analogues of the standard properties of the append function for lists.
+*}
+
+declare [[ sledgehammer_problem_prefix = "BT__append_assoc" ]]
+
+lemma append_assoc [simp]: "append (append t1 t2) t3 = append t1 (append t2 t3)"
+apply (induct t1)
+ apply (metis append.simps(1))
+by (metis append.simps(2))
+
+declare [[ sledgehammer_problem_prefix = "BT__append_Lf2" ]]
+
+lemma append_Lf2 [simp]: "append t Lf = t"
+apply (induct t)
+ apply (metis append.simps(1))
+by (metis append.simps(2))
+
+declare max_add_distrib_left [simp]
+
+declare [[ sledgehammer_problem_prefix = "BT__depth_append" ]]
+
+lemma depth_append [simp]: "depth (append t1 t2) = depth t1 + depth t2"
+apply (induct t1)
+ apply (metis append.simps(1) depth.simps(1) plus_nat.simps(1))
+by simp
+
+declare [[ sledgehammer_problem_prefix = "BT__n_leaves_append" ]]
+
+lemma n_leaves_append [simp]:
+     "n_leaves (append t1 t2) = n_leaves t1 * n_leaves t2"
+apply (induct t1)
+ apply (metis append.simps(1) n_leaves.simps(1) nat_mult_1 plus_nat.simps(1)
+              semiring_norm(111))
+by (simp add: left_distrib)
+
+declare [[ sledgehammer_problem_prefix = "BT__bt_map_append" ]]
+
+lemma (*bt_map_append:*)
+     "bt_map f (append t1 t2) = append (bt_map f t1) (bt_map f t2)"
+apply (induct t1)
+ apply (metis append.simps(1) bt_map.simps(1))
+by (metis bt_map_append)
+
+end